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1 Abstract

In this report, we consider the problem of stabilizing the internal momentum of a satellite in
Low Earth Orbit (LEO) that is controlled by reaction wheels. Over time, the angular momentum
of these wheels increases to counteract disturbances, and must eventually be unloaded to prevent
the wheels from exceeding their maximum allowable angular velocities. We propose an offline
Reinforcement Learning (RL) approach to developing a momentum stabilization control law using
only magnetic actuators and the Earth’s magnetic field. We present results for several variations of
this offline RL algorithm with differing input sets and compare the performance of the developed
policies in three different simulated disturbance environments. We conclude that RL can perform
better than a classical control law, but questions remain regarding the stability of the RL approach.

2 Introduction

Space is commonly assumed to be a pure vacuum, but in reality, it is not, especially for satellites
in Low Earth Orbits (LEO). Real satellites encounter disturbances including upper atmospheric
drag, solar radiation pressure, gravity gradient, magnetic field interactions, etc. In the long term
(months-years), these disturbance forces, especially drag, tend to make a spacecraft’s orbit decay.
Additionally, in the short term (hours), the resultant disturbance torques induce satellite rotations,
which may conflict with mission objectives. Most commonly, onboard reaction wheels are used to
counter these torques, but if the torque is non-zero-mean (as drag usually is), then these wheels
will spin faster and faster until the wheels’ angular momentum needs to be unloaded. A cost
effective way to unload this momentum is to use magnetic torquer bars (MTBs) that exert a torque
in the presence of the Earth’s magnetic field to provide opposing torques while unloading stored
momentum in the wheels.

However, existing linear control laws for MTBs provide solutions to this problem only when
disturbances are fairly small. It is difficult to improve upon these control laws due to the irregularity
of Earth’s magnetic field. The momentum saturation problem is also heightened for CubeSats,
which frequently have high area to mass ratios and small actuators. Reinforcement learning (RL)
algorithms have been shown to provide effective solutions to complex control problems, and we
attempt to extend these advancements to develop control laws that stabilize a satellite’s angular
momentum. We base our experiments in this project on a simulated environment developed by
NASA called 42 [1], that is capable of emulating satellite attitude evolution given control inputs.
Based on data generated using many runs of this simulator, we study the performance of offline
actor-critic based algorithms to attempt to solve the momentum stabilization problem in high
disturbance cases where existing control methods are inadequate. To the best of our knowledge,
reinforcement learning methods have not previously been used to solve this problem, so the purpose
of this project was to study their performance when trained on this newly created dataset.
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We choose to learn the control laws offline, using previously collected datasets from 42. We
do so in part because of the presence of uncontrolled states in the dynamics, and in order to
leave open the possibility of learning a policy on real satellite data in the future, as it would be
prohibitively dangerous to learn a policy online from scratch in a real satellite environment. We used
three offline RL algorithms, 1) conservative Q-learning (CQL) [2] 2) twin delayed deep deterministic
policy gradient with behavior cloning (TD3+BC) [3], and 3) conservative offline model-based policy
optimization (COMBO) [4] to learn control policies offline. In addition to learning the policies, we
also conducted RL hyperparameter tuning, for which we use fitted-Q evaluation (FQE) [5] as an
offline estimator of the learned control law’s performance to guide our hyperparameter search.
The implementation of the above was assisted via the Python library d3rlpy [6], which provides
implementations of the above algorithms with a Scikit-Learn style interface. We then evaluate the
learned control laws by simulating their performance on a CubeSat in 42 [1], and find certain cases
where the learned control laws outperform the baseline control law used to generate the data.

Statement about prior research: This project topic is motivated by one of the team members’
prior work in industry with MTB control laws and 42. However, none of the team members had
completed any prior research involving machine learning with satellites prior to this course.

3 Problem Formulation

A sample CubeSat as rendered in the 42 simulator is shown in Fig 1. The CubeSat is modelled
as a rigid body with 6 positional degrees of freedom, 6 rotational degrees of freedom, and 3 internal
reaction wheels. For simplicity, assume the CubeSat’s orbital radius (a = 6778 km), eccentricity
(e = 0), and inclination (i = 80◦) are fixed. Within this selected class of orbits, the CubeSat’s
position is described entirely by the angles ν and Θ shown in Fig 2. Here, ν is the true anomaly,
which represents the position of the satellite in its orbit; Ω is the right ascension of the ascending
node of the orbit; Θ is defined as Θ = Ω − θ, where θ captures the current rotation of the Earth
in the day. Let β denote the angle between the local Sun vector and a vector normal to the
orbital plane, so β describes the position of the CubeSat’s orbit with respect to the Sun, which will
influence the magnitude of atmospheric drag disturbances. The CubeSat’s position is thus reduced
to three degrees of freedom (ν,Θ, β). Note that the satellite’s future orbit is given entirely by its
initial conditions (i.e. we assume there are no onboard thrusters), so (ν,Θ, β) are uncontrolled
states, though the dynamics of these states are known to high precision.

Next, assume the satellite’s orientation is fixed in a Local-Vertical-Local-Horizontal (LVLH)
frame in the orientation shown in Fig. 1 (where the magenta lines l̂1, l̂2, l̂3 are the LVLH frame) to
eliminate all rotational degrees of freedom, and assume that the internal reaction wheels perfectly
account for all disturbances. The satellite’s internal momentum is H ∈ R3, and the complete state
after these simplifications is x = (ν,Θ, β,H) ∈ R6. The wheel dynamics are

Ḣ = Tdist + Tmag −
√

µ

a3
ĥ×H (1)

where µ, a, and ĥ are known quantities, Tdist is the disturbance torque, and Tmag is the torque from
the onboard MTBs. Here, Tdist is a function of both the position (ν,Θ, β) and unknown parameters
(c10.7, cap) that vary between simulations. The magnetic torque satisfies

Tmag = u×B (2)
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Figure 1: CubeSat
Figure 2: The satellite around the Earth and
the Sun (not to scale)

where u ∈ R3 is the commanded satellite magnetic field, which is our control input, and B is the
Earth’s magnetic field. Due to the cross product in (2), we can only instantaneously exert torques
Tmag in a 2D subspace of R3, and we assume that the actuators are limited to ∥u∥∞ ≤ umax. The
quantity B = B(ν,Θ) ∈ R3 is the magnetic field of the Earth at the point that the satellite is
currently passing through, which is a well-modelled but highly complex function. This complexity
is what makes creating nonlinear controllers challenging, and is why we are interested in RL. For
this project, we assume perfect measurement of all states (ν,Θ, β,H) are known to the controller,
as the sensors used in practice are very precise.

The total internal momentum ∥H∥ varies throughout an orbit, and the maximum expected
value of ∥H∥ determines the required size of the reaction wheels. Larger reaction wheels will
require more mass, volume, and power, which are all expensive resources on a CubeSat. Thus, the
objective is to find a policy π(x) that minimizes this peak momentum. To better condition the
learning algorithms, we instead use the instantaneous reward

r(x, u) = −∥H∥ . (3)

Note that the momentum plots encountered in this project often appear to diverge, as illustrated in
Fig. 4 in Section 5. This is because the orientation chosen for experiments causes the CubeSat solar
arrays to produce maximal torque from atmospheric drag. This particularly challenging hardware
design was encountered in one of the author’s prior work, and to date, no policy stabilizing such a
CubeSat (for reasonably sized actuators) has been found. We are interested in whether RL-derived
policies can solve this problem, and if not, whether they can still reduce the needed actuator sizing
for more reasonably-designed hardware.

4 Methodology

4.1 Overview

The solution process can be broken down into the following three steps:

1. Collect data by running 42 many times,
2. Learn a policy offline using the collected data,
3. Test the generated policy in 42 with a few selected orbits and evaluate the results.

All three steps were repeated multiple times.
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4.2 Data Collection with 42

We generated data sets using four different behavior policies: 1) a data set using the re-

sults of a nominal control law unom = 106

∥B∥2H ×B, 2) a data set where every control action was

uniformly randomly sampled from the control bounds, 3) a data set using partially stochastic
control inputs ustoch = unom + y, y ∼ N (0, 0.2 diag(|unom,x|, |unom,y|, |unom,z|)), where unom =
[unom,x; unom,y; unom,z] and 4) a data set using constant control inputs for large sections of the or-
bit1. We started by choosing control inputs every 0.2 seconds (the time-step of the simulator), but
later switched to sampling control inputs every 5 seconds to reduce the amount of data processed.

We also considered two different behaviors for the (c10.7, cap) values during data generation.
First, we set c10.7 ∼ U(100, 230), cap ∼ U(50, 100) at the beginning of every training simulation.
This most realistically models real behavior, as these parameters vary very slowly. However, after
computing initial results and noticing that our algorithms performed very differently when tested
under different (c10.7, cap) values, we decided to regenerate training data with sampling (c10.7, cap)
randomly from the above distributions every 5 minutes of simulated time. For simplicity, all orbits
originated from the same initial conditions, and thus followed the same (ν,Θ, β) trajectories.

4.3 Algorithms Used to Learn Policies

Offline RL is known to be a difficult problem, with one notable issue being the over-estimation
of the Q-function on out-of-dataset state-action tuples. To alleviate this issue, we explored the
use of the following offline RL algorithms: 1) conservative Q-learning (CQL) [2], 2) twin delayed
deep deterministic policy gradient with behavior cloning (TD3+BC) [3], and 3) conservative offline
model-based policy optimization (COMBO) [4].

CQL produces a lower bound on the Q-value of a given policy, which is incorporated into
the policy evaluation stage of soft actor-critic algorithm. TD3+BC improves TD3 by adding a
behavior cloning term to TD3’s objective function of deterministic policy gradient, to regularize
the learned policy. The BC term penalizes actions different from those taken under the behavior
policy. COMBO learns a probabilistic model of the state-transition dynamics from the data, and
then regularizes a learned value function on unseen state-action pairs taken under rollouts of the
model. In theory, these algorithms are capable of mitigating the problem of distributional shift
between the behavior policy and the learned policy, which induces Q-function over-estimation in
offline RL. However, in practice, we only proceed with extensive experiments on CQL and TD3+BC,
as COMBO performed just as well as providing no control at all in early experiments. Though
these early experiments only included four orbits of data from which to learn a dynamics model,
and thus COMBO might perform better with more data, we decided to focus on the other two
methods given the limited computing resources available.

In learning control laws offline, we used the d3rlpy [6] library’s implementation of these offline
RL algorithms. d3rlpy is a Python library implementing a wide variety of state-of-the-art offline
RL methods, with a Scikit-Learn interface. In addition to the data set and algorithm selection, we
also input to the d3rlpy toolbox the neural net architectures and hyperparameter choices described
in the following sections.

1Dataset 4 was the result of a bug in the data generation code. By “large sections”, we mean that the control
input was piecewise constant and changed 1-4 times during each orbit. The exact number of changes was different
during each orbit due to the bug. We include this data set because one of the policies learned from it performed
surprisingly well.
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4.4 Neural Function Approximation Architecture

We used three different neural network architectures in our experiments. The first neural
network architecture used two hidden layers of 256 units each with ReLU activation functions for
both the actor and the critic. This was the default choice within d3rlpy, and the primary choice
for our experiments. In this report, we refer to this as architecture A.

The second neural network architecture had 1) five hidden layers of 12, 24, 36, 24, 12 hidden units
respectively for the actor, and 2) four hidden layers of 12, 24, 24, 12 hidden units respectively for the
critic. Each hidden layer used in the second set neural network architecture had a ReLU activation
function, was batch normalized, and had a dropout rate of 0.2. We refer to this configuration
as architecture B. We experimented with the use of this neural network architecture to better
understand the influence of hidden layer sizes and network depths on model performance.

After noticing poor performance with the second neural network architecture, we found prior
research by Sinha et. al. [7] explaining that deeper neural networks, such as that in architecture B,
do not necessarily correspond to better performance. We therefore experimented with a modified
version of the DenseNet architecture from Sinha et. al., with 1) four hidden layers of 24, 36, 36,
24 hidden units respectively for the actor, and 2) three hidden layers of 24, 36, 24 hidden units
respectively for the critic. Like in architecture B, each hidden layer used in this third architecture
had a ReLU activation function, was batch normalized, and had a dropout rate of 0.2. Unlike
architecture B, however, we incorporated dense connections from the inputs to each of the layers,
as Sinha et. al. suggest. We refer to this configuration as architecture C in Tables 1-2.

4.5 Policy Evaluation in 42

After learning control laws offline, we then evaluated the trained policies in 42. In each eval-
uation, we used the same initial conditions as in the dataset, but with three sets of unknown
parameters (c10.7, cap) = (150, 50), (c10.7, cap) = (180, 70), and (c10.7, cap) = (210, 90), which were
held constant throughout each evaluation orbit. The policies were ranked based on the metric

R =
∑

j∈{1,2,3}

Rj , Rj =
1

N

N∑
i

r(xj(ti), uj(ti)) (4)

where j denotes the set of unknown parameters. Here, R1 denotes the set of unknowns indicating
relatively small disturbances (c10.7, cap) = (150, 50), R2 denotes the a moderate level of distur-
bances (c10.7, cap) = (180, 70), while R3 denotes the set of unknowns indicating large disturbances
(c10.7, cap) = (210, 90). We considered testing at even smaller and larger disturbance values, but for
the neural nets to be effective at such values would require sampling the training data from wider
distributions of (c10.7, cap) than described in Section 4.2.

4.6 Confounding

Recall that the underlying dynamics model had two unknown parameters (c10.7, cap) that affect
the disturbance torque Tdist. These correspond to the upper atmospheric F10.7 and Ap-indices
(stored in c10.7 and cap respectively), where the former is a measure of current solar activity while
the latter is a measure of current geomagnetic activity. These indices greatly affect the magnitude
of the disturbance Tdist and typically vary on daily or hourly timescales. Thus, ∥Tdist∥ does not
vary substantially on short timescales.

One can consider the effect of these indices to be a confounder γ drawn at the start of every
episode (orbit) affecting the state transitions through its effect on the underlying dynamics model.

5



We experiment with attempting to account for this confounder via augmenting the state vector
with an additional metric γ estimating the norm of the disturbance torque Tdist at any given point
in time. Recall that the state transition dynamics evolve as in (1). Rearranging (1), we obtain

Tdist = Ḣ − Tmag +

√
µ

a3
ĥ×H, (5)

γ =

∥∥∥∥H(tk+1)−
[
H(tk) +

(
−Tmag(tk) +

√
µ

a3
ĥ×H(tk)

)
(tk+1 − tk)

]∥∥∥∥ ≈ ∥Tdist∥(tk+1 − tk) (6)

In the algorithm denoted “CQC+C” in Table 2, we feed the metric γ into the model as a seventh
element in the state vector.

4.7 Hyperparameter Optimization

Hyperparameter optimization is an important step in training a learning model and discovering
its true capability. Hyperparameters play a major role in influencing the convergence properties
of an algorithm and determine how well the model learns during the training process. In our
experiments, we opt for a random search of hyperparameters instead of a grid search as it has been
shown previously to be more efficient and effective [8].

We perform this search on the hyperparameters of the CQL [2] and TD3+BC [3] algorithms,
where for a given search iteration, the model was trained on a particular dataset for 50 epochs
and evaluated with FQE [5] for another 50 epochs on the datasets generated by ustoch and by the
uniform random policy. We used FQE instead of online evaluation in 42 to help ease the demands
on computational resources when performing hyperparameter searches.

Through our initial experiments in training CQL [2] and TD3+BC [3], we found that a particular
policy tended to provide good evaluation results on the simulator 42 when the FQE [5] values
were high on both datasets, though the FQE estimates were generally overly optimistic compared
to the simulated value functions. Therefore, we refer to the “best” hyperparameters as those
that maximize the harmonic mean of the FQE [5] values using both datasets. We performed 40
such search iterations, choosing random hyperparameters in each search iteration. The optimal
hyperparameters found for each algorithm by the random search can be seen in Table 1.

The hyperparameter tuning process was very computationally expensive, even when evaluated
using FQE. Due to a lack of time and the computation associated with this process, not all the
hyperparameters in Table 1 could be evaluated in simulation for a more accurate representation
of their performance. Moreover, although the results in Table 1 are from an extensive search
on selected hyperparameters, there is room for optimizing on other hyperparameters, such as the
number of training epochs and the architecture of the actor-critic frameworks (the sizes of hidden
layers, activation functions, depth of networks etc), which could be taken up in future work.

5 Selected Results

We ran many iterations of training with different datasets and algorithms, and then implemented
the resulting policies in 42. Results for several of these policies are enumerated in Table 2.

The first datasets that we trained on were collected at the same rate as the simulator time
step, 0.2 seconds. This resulted in excessively large data files, which were difficult to run training
algorithms on. That said, the CQL algorithm using these datasets with 100 orbit samples (cases
7 and 8 in Table 2) outperformed the linear controller unom when the disturbance was (c10.7 =
180, cap = 70). Here, the number of orbit samples was chosen as 100 based on the amount of
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Hyperparameters FQE
Learning
rate of
actor

Learning
rate of
critic

Learning
rate of
temper-
ature
parameter
(CQL
only)

Number
of steps in
TD Cal-
culation

Discount
factor

Evaluation
on data
generated
through
the purely
stochastic
policy

Evaluation
on data
generated
through
stochastic
linear
policy

U CQL A 0.0067 0.0010 9.39E-05 3 0.99 -16.2422 -1.7636

U CQL B 0.0029 0.0044 5.29E-05 3 0.99 -14.8702 -1.2491

S CQL A 8.20E-04 0.0039 4.62E-05 7 0.99 -1.4474 -1.227

S CQL B 0.0033 0.0099 1E-05 1 0.99 -13.7167 -1.7394

U TD3+BC A 0.0055 0.0019 - 1 0.99 -3.7406 -1.7609

U TD3+BC B 0.0047 0.0009 - 3 0.99 -10.8529 -2.0589

S TD3+BC A 0.0012 0.0076 - 1 0.99 -9.0338 -3.0962

S TD3+BC B 0.0043 3.71E-05 - 3 0.99 -1.5773 -1.7096

Table 1: Hyperparameters of CQL [2] and TD3+BC [3] found through the random search operation.
Legend: U = data generated through uniform random policy, S = data generated through ustoch,
A = neural network architecture set A, B = neural network architecture set B

memory available in the computer used for training. We were surprised that this improvement was
achieved using only this many orbits, as we had originally generated much more data. However,
these cases underperformed compared to unom at the other tested values of (c10.7, cap). This is
likely because (c10.7 = 180, cap = 70) was near the average of the (c10.7, cap) values under which
training data was generated. Thus, these policies prove that it is possible to improve upon unom
with reinforcement learning, but the policies generated are not yet robust enough to be useful.

Seeing these issues, we generated new training datasets with three changes. First, we sampled
less frequently at only 5 second intervals. This seemed appropriate since the outputs of the policy
unom do not vary rapidly on that time scale. Second, instead of setting the (c10.7, cap) values at the
beginning of each orbit, we varied these parameters every 5 minutes of simulated time. We hoped
that this might make the policies more robust to variations in (c10.7, cap). Third, we changed the
training policies to be more stochastic (see Section 4.2 for a description of the policies), hoping that
this might result in discovery of more optimal control actions. These changes resulted in several
learned policies that performed better than unom in one or more of the disturbance environments,
and three policies (cases 14, 20, and 21) that performed better than unom in all three disturbance
environments. However, the performance of cases 11-21 varied drastically between each other, so
there are still unanswered questions regarding what is the best way to generate training datasets.

At the same time, recognizing the importance of the unknown parameters (c10.7, cap), we added
the additional state variable γ representing the disturbance magnitude. Case 19 in Table 2 docu-
ments the results of this case. Unfortunately, the addition of the metric γ in (6) to approximate
Tdist seemed to neither hurt nor help the learning of an effective control law. We theorize that
this could be due to the fact that Tdist varies with the CubeSat’s position in the orbit as well as
the F10.7 and Ap-indices. As the CubeSat’s position in the orbit is already included in the state
vector, our metric of Tdist is heavily nonlinearly correlated with the three states comprising the
CubeSat’s position in the orbit. It is possible that this impeded learning the relationship between
the F10.7 and Ap-indices (as observed through γ) and the appropriate actions to take for each value
of (c10.7, cap).

Seeing how the best performing case on nominal disturbances in the initial dataset came from
the “approximately constant” policy, we then generated an additional training data set using this
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policy with 5 second sampling frequency, which was run as case 18 in Table 2. However, case 18
performed terribly. We are not sure why this was the case, and future work should study whether
this was the result of the differing sampling intervals or some other factor. Next, noting how the
momentum curve tends to diverge at the end of the orbit (e.g. see Fig 4), we trained over data
lasting two whole orbits, and achieved minor policy improvement in case 20, though this was very
similar to case 14 which was trained on the first orbit of each run in the same dataset. Most of
the experiments were done under neural net architecture A, as architecture B generally performed
poorly in Table 2. The updates in architecture C fixed the most common errors with architecture
B, and performed comparably to the original architecture A, though further testing is needed to
evaluate the robustness of architecture C.

Next, we note some common behaviors for the state trajectories observed under the trained
policies. First, Fig. 3 shows a plot of H under unom for several orbits. Note how the momentum
on the x axis increases for the first two orbits, and then settles nearly into a periodic curve (the
aperiodic variations are due to irregularities in the Earth’s magnetic field). Recall how we only
trained our learned policies over single orbit datasets. If Fig 3 is restricted to a single orbit timescale,
then it will appear that the x axis momentum is diverging at the end of the first orbit. This is also
observed in the neural net policy in Fig. 4, which shows the most common qualitative behavior
of the satellite momentum across all the neural net policies. Recall from Section 3 that this is
the expected behavior for this particular CubeSat hardware. However, some policies would over-
correct for this positive x momentum, such as shown in Fig. 5. This policy prevented the apparent
divergence of the x axis momentum (at the same (c10.7, cap) values as Figs. 3-4), but still resulted in
a low reward (3) because the momentum was not driven to zero. This was commonly a reason for
achieving low rewards under the (c10.7 = 150, cap = 50) disturbance indices. Qualitatively, Figs 4-5
show the most common behaviors for the momentum curves from the learned policies. Certain
policies also resulted in actions similar to under u = 0 for unknown reasons, which we suspect
originated from coding bugs. Lastly, Fig. 6 shows the control inputs during a single orbit run of
unom and a run of the best performing policy on average. Note how the best policy only makes
small modifications to the actions taken under unom to be slightly more aggressive in its control
inputs, though it outperforms unom on all three cases and on average. This may be because unom
is nearly optimal, or because case 20 was trained using data from ustoch, which is similar to unom.

6 Conclusion

Despite the difficulty in the problem caused by the particularly challenging hardware design for
the CubeSat, we’ve successfully managed to learn multiple control laws offline that outperform a
baseline linear control law, both on average and in all three cases. This demonstrably showcases
the performance of reinforcement learning methods in the application of CubeSat attitude control.

However, questions remain about the stability of the learned control laws on episodes longer
than a single orbit, as the momentum curves appear to diverge at the end of each dataset. Still, as
the policies were only learned on single orbit datasets, we hope and conjecture that increasing the
amount of training data and the length of each episode in future work will improve the performance
of our learned control laws. Additionally, the CubeSat was also kept in the same orientation relative
to the Sun, and was also started from the same position relative to the Sun in our experiments. As
such future work should also include learning control laws in situations where these are not fixed.

The performance of the learned control laws can be further improved when we note that these
control laws were learned offline, with no online fine-tuning. Implementing online fine-tuning of
the learned control law with online RL methods during deployment will likely further improve the
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Figure 3: Momentum curve under unom
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in Figs. 3-4

Note that all of Figs. 3-6 are for the choice (c10.7 = 180, cap = 70).

performance of the control laws while allowing them to be adaptive to changing conditions. One
could also easily implement ensemble control laws that switch between a learned control law and
a deterministic (linear) control law depending on whether the current state had been seen during
the training data or not.

Other future work can include taking 1) another attempt at probabilistic model-based methods
like COMBO with larger datasets to learn models of the underlying dynamics, though a much
more sample-efficient method that is likelier to succeed is to instead 2) incorporate our knowledge
of the dynamics given an (interval or point) estimate of the unknown parameters (c10.7, cap). One
could also 3) learn estimates of the unknown parameters (c10.7, cap) via supervised learning methods
instead of relying on the metric γ, 4) explore other neural network architectures for control policies
that may yield better performance, and 5) perform a more extensive hyperparameter search with
a more accurate evaluation scheme to find optimal hyperparameters that do well in simulation.
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