
Motion Planning Around Plants
Anirudh Aatresh

Dept. of ECE
University of Michigan

Ann Arbor, USA
aaatresh@umich.edu

Johnson Zhong
Robotics Institute

University of Michigan
Ann Arbor, USA
zhsh@umich.edu

Instructor: Dmitry Berenson
Robotics Institute

University of Michigan
Ann Arbor, USA

dmitryb@umich.edu

December 20 2021



Abstract—Robot gardening with a manipulator will often
involve scenarios where the arm will need to move through
plants for the end effector to reach its target position without
damaging them. Success of rapidly exploring random trees (RRT)
motivate us to develop a modified bi-directional RRT framework
capable of gently deflecting plants out of the arm’s way as it
reaches the goal configuration from the initial state. We define a
cost function metric to assess our method, and our experiments
with various plant based environments show that our method
yields the lowest score in each environment when compared
to benchmark techniques. We also extend this effort towards
planning under uncertainty and demonstrate our results in this
scenario as well. Our results show that the algorithm developed
during this independent study is capable of producing suitable
paths through plants to reach its destination in complex plant
environments.

Index Terms—Motion Planning, Robot Gardening.

I. INTRODUCTION

The task of motion planning for manipulators around plants
is an especially time-worthy one as the dexterity and degrees
of freedom offered by manipulators can be incredibly useful
for a variety of gardening tasks. The ability to reach various
locations and achieve complex configurations permits a manip-
ulator’s end effector to reach areas that would be otherwise
hard to get to. A great application for such a robot would
be weed removal and produce harvesting, where the object of
interest would at times be at the base or in between tall plants,
and would require a robot to move through these plants to get
to it. This would be a requirement for the robot garden project
on the roof of the Wilson Center, University of Michigan,
where a mobile robot with a manipulator will be required to
carry out gardening functions.

The task of moving gently through plants to get to an object
of interest is challenging as the planner must somehow keep
track of the state of the plants to prevent damaging them
as it finds a path to its goal from its initial state. We are
motivated to solve this problem as it can enable a manipulator
to move through difficult environments in order to get to its
final state, without damaging any of the plants in its way. The
environment in this context would be a garden in which plants
are present along with a particular object of interest that we
would like to reach using a manipulator. In our experiments,
we carry out these tasks in simulation and validate our ideas
by comparing it against two benchmark approaches that we
later develop.

In addition to solving this motion planning problem, we
consider the task of planning under uncertainty. Simulation
experiments when mimicked in the real world often fail to
reliably mirror the simulation results when tested under similar
conditions due to the inability of the simulator to produce an
environment that is close to real-world conditions. However,
such experiments with uncertainty in environments are crucial
as they give us a more realistic picture about the kind of
unpredictable environments the planner will see in the real
world.

The motion planning problem is a well studied task in
robotics. In its essence, it is being able to find a path from

where the robot is now, to where it should be such that it
does not collide with other parts of itself and the environment.
Using mathematical notation, it can be defined as: Given
a robot description A, obstacle description O, a C-space
C, initial configuration qinit ∈ C and a goal configuration
qgoal ∈ C, compute a continuous path τ : [0, 1] → Cfree
such that τ(0) = qinit and τ(1) = qgoal [1].

One of the earliest successful attempts at deploying motion
planning algorithms in the real world was on Shakey [2].
Shakey demonstrated this excellently for its time, where it used
a visibility graph search algorithm to plan its route. Today,
motion planning algorithms have been deployed in a variety
of robotics applications spanning from manufacturing robots
[3] to field robots [4].

Motion planning methods can be classified into combina-
torial planning and sampling based planning methods, with
the later being used in more practical scenarios currently.
Sampling based planning methods have gained prominence
for practical implementations as they do not require explicit
constructions of the Cobs space, which was one of the hurdles
in the use of combinatorial methods. They simply work
by sampling the C-space instead. Moreover, the ability to
modularize various components of the planner in the sampling
case such as treating the collision checker as a black box
provides a higher flexibility and ease in its development.

Examples of popular sampling based planning algorithms
are probabilistic roadmaps [5] and rapidly exploring random
trees [6]. The probabilistic roadmap method, which is a multi-
query approach, consists of two phases: the preprocessing
phase and query phase. The former phase comprises of cre-
ating a graph by incrementally sampling the C-space and
attempting to reach it from the nearest node in a graph. The
latter phase consists of finding the shortest path through the
graph between two given nodes, qinit, the initial node and
qgoal, the goal node. The RRT algorithm however, is a single
query approach and is of more interest to us for solving the
problem at hand.

The rapidly exploring random tree algorithm [6] is a highly
successful sampling based algorithm that is widely used for
motion planning when the C-space is of limited dimension.
It is based on randomly sampling nodes in the C-space
of the robot and attempting to make a connection to that
node from the nearest node in a graph that grows as the
algorithm progresses. Repeatedly running this algorithm would
ideally result in the planner exploring the entire C-space
in a random fashion and eventually finding a path between
the goal and the source or returning a null solution to the
path finding problem. RRTs however, do not comply with
the notion of completeness defined for combinatorial planning
methods. They abide by a weaker notion of completeness,
called probabilistic completeness. This means that with enough
number of samples, the probability of finding a path, provided
it exists, converges to one.

The bi-directional variant [7] of this algorithm consists
of two trees growing in parallel, one from the source node
towards the goal and the other from the goal node to the



Fig. 1. Our simulation experiments. (Left) Planning around single stem plants. (Middle) Planning with a multi-branch plant. (Right) Planning in a multi
world environment with multi-branch plants.

Fig. 2. Characterizing the state of a plant link using deflection angles.

source node. A combination of this bi-directional framework
with the RRT connect modification [8] makes the planner
robust against the infamous bug-trap and narrow passage
environments. This algorithm has been described in algorithm
1. A famous accomplishment of this algorithm was its ability
to solve the Alpha 1.0 puzzle in 2002. Diankov et al. in [9]
proposed a bi-space planning algorithm that runs on a similar
idea for concurrent exploration in differing C-spaces. We
adopt a similar idea to the bi-space planning framework when
developing our algorithm, with the inclusion of the storage
of the states of the environment in the planning process and
different criteria for constraint violations for the forward and
backward trees.

Motion planning for robotic manipulators around plants
has also been explored to a certain extent by the research
community. Bao et al. [10] proposed the use of probabilistic
roadmaps for the purpose of performing leaf phenotyping in

real-time using a robotic manipulator. Their algorithm uses the
voxel data generated by a Kinect sensor and laser profilometer
to perform collision checking online. Ohi et al. [11] suggested
using visibility graphs for the motion planning task of an
autonomous pollinator robot, that is capable of performing
SLAM, perception and manipulation to achieve its objective.
The authors in [12] proposed a very interesting idea of using
artificial potential fields [13] for the task of harvesting using
manipulators, which is one of the applications that we are
targeting for our algorithm. However, these references do not
deal with the gentle deflection of plants by a robot to get to its
final goal configuration. In our experiments, we focus on this
part of the problem as it can so happen that this scenario is
encountered often during robot gardening using a manipulator.

Planning in dynamic environments and under uncertainty is
of prime interest among roboticists as that presents conditions
which most closely resemble what planning in a real world
scenario would look like. Simulators are often unable to depict
physical parameters accurately, thereby leading to an improper
transfer from simulation to real. This gap is referred to as
the reality gap [14]. The EMPPI [15] framework is an idea
proposed by Abraham et al. that can be used to produce control
signals in uncertain environments. It uses an ensemble of
MPPI [16] control frameworks to perform online adaptations
in dynamic environments. Our approach is similar to the
EMPPI framework in the sense that we use a single planner
to simultaneously find a path through randomly generated
environments using a custom policy.

This document has been divided into three sections, with
section I covering the introduction. Section II describes the
proposed algorithm, the experiments and observations that we
obtained. Section III portrays the results that we have obtained
and finally, section IV concludes this report.

II. OUR PLANNING ALGORITHM

To tackle the motion planning problem around plants, we
consider the previous success of sampling based planning algo-
rithms such as the rapidly exploring random tree (RRT) [6] and



its modifications such as RRT connect [8] and Bi-directional
RRT [7]. We further build upon them by incorporating the
state of the plants into the algorithm along with path checking
mechanisms to make sure the final path generated does not
violate any constraint. This yields a robust planner capable
of finding a path even through the most difficult of plant
environments. A description of this algorithm and its working
has been explained in the following subsections.

A. Characterizing the state of the plant

In order to make sure the arm does not damage any plant as
it executes its path, the algorithm needs to somehow track the
state of the plants in the environment. In order to keep track of
its state, we must first characterize a plant by finding a measure
of the amount of ”damage” it incurs or the ”gentleness” factor
that the planner must adhere to.

In our experiments, we consider the deflection of the plant
to be this measure. The deflection of a plant encompasses
the deflections of all the links that make up the plant. We
measure the deflection of a link as the extent of deviation
from the polar axis of the link in its local frame (fig. 2). This
would correspond to the polar angle measured with respect
to the polar axis of the link in its local frame. We use these
deflections to get an idea of the amount each plant link can
be moved by the planner as it finds a path from start to goal
configurations.

We define constraint violations as a combination of col-
lisions of the arm with rigid objects and over-deflections of
plants by the arm. Our planning algorithm must check for
constraint violations as it searches and finds a path through the
joint space of the arm. To measure the amount of deflection
of each link, we use the dynamics of the simulator and its
corresponding API in our implementation.

B. The Planner: Modified Bi-Directional RRT Algorithm

Our observations from initial experiments with the uni-
directional RRT algorithm for this application showed that it
is very slow and sometimes unable to converge to a solution
given the time and computational resources present when this
experiment was conducted. This can be attributed to the fact
that the problem at hand is analogous to a narrow passage
problem in its C-space, which RRT connect and bi-directional
RRTs are better at solving.

In order to use this algorithm (bi-directional RRTs) for
planning around plants on the condition that the robot is
allowed to deflect plants within a particular limit only, one
of the most significant modifications is the storage of the state
of the environment in the RRT algorithm’s nodes. This is
important because every node in the RRT graph represents
joint configurations of the robot that permit collision free and
over deflection free robot states, and the state of the entire
environment at that point during simulation. This is useful
during the RRT planning process when an attempt is made
to find a path between the closest node on the graph and
the target node. Once the nearest node is found, the state of
the environment stored in the nearest node is restored before

Algorithm 1: Bi-directional RRT algorithm.
Data: qinit, qgoal.
Initialization: fwdTree.init(qinit), bwdTree.init(qgoal),
NUM RRT ITER

while k < NUM RRT ITER do
qtarget = SAMPLE()
qnearest = fwdTree.nearestNeighbor(qtarget)
qlast, = EXTEND(qtarget, qnearest)
qnearest = bwdTree.nearestNeighbor(qlast)
qbwd last, success = EXTEND(qlast, qnearest)
SWAP(fwdTree, bwdTree)
IF(success):
THEN BREAK
ENDIF
k → k + 1

end
path = retracePath(fwdTree, bwdTree, qlast, qbwd last)
path = smoothPath(path)
Result: path; This is the smoothed path between qinit

and qgoal obtained by the bi-directional RRT
algorithm.

Fig. 3. Extension of the nearest node towards the newly sampled node
(sampled node 1) in our modified bi-directional RRT algorithm. Samped node
2 is the next newly sampled node after an extension attempt is made toward
sampled node 1.

attempting to extend towards the target node. The reasoning
behind this operation is because the state of the environment
in our experiments changes as the planner attempts to find a
path, meaning that each node on the graph will be associated
with a particular environment state. It is therefore crucial that
this state be restored before an attempt is made to extend
from it towards the newly sampled node. The new modified
bi-directional RRT algorithm has been shown in algorithm 2.

In our problem formulation, we have simplified the planning
task by assuming that the planner is given the initial and goal
configurations to begin with, such that they do not violate any
constraints. Obtaining these configurations is a trivial matter,
and in our experiments, the joint state of the arm was set to
the given pose using the simulator’s API. The state of the



Algorithm 2: Modified Bi-directional RRT algorithm
for motion planning around movable plants for a ma-
nipulator.

Data: qinit, qgoal such that qinit and qgoal do not
violate any constraints.

Initialization: qinit.storeEnvState(),
qgoal.storeEnvState(), fwdTree.init(qinit),
bwdTree.init(qgoal), NUM RRT ITER

while k < NUM RRT ITER do
qtarget = SAMPLE()
qnearest = fwdTree.nearestNeighbor(qtarget)
qnearest.restoreState()
qlast, = EXTEND AND STORE STATE(qtarget,
qnearest)
qnearest = bwdTree.nearestNeighbor(qlast)
qnearest.restoreState()
qbwd last, success = EXTEND(qlast, qnearest)
IF(success):
THEN allFine, path =

CHECK FULL FWD PATH(fwdTree, bwdTree)
IF(allFine):
THEN BREAK
ENDIF

ENDIF
k → k + 1

end
path = retracePath(fwdTree, bwdTree, qlast, qbwd last)
path = smoothPath(path)
Result: path; This is the smoothed path between qinit

and qgoal such that it safely traverses without
violating any constraints.

environment when the arm was at these configurations was
stored in their respective nodes for future use. A forward and
backward tree was created and initialized with the source and
goal nodes respectively.

A node (qtarget) is then sampled in the C-space of the
manipulator and the nearest node in the forward tree is found
(qnearest). The state of the environment stored in this node is
then restored. An attempt is made to extend towards qtarget
from qnearest by creating nodes in between them on a straight-
line path at a particular resolution. The extension from qnearest
is carried out until qtarget is reached or a constraint is violated
(fig. 3). It is very important to note that at every node, the state
of the environment for that configuration is stored in that node.
So to be clear, the configuration of the arm and the state of the
environment at that configuration is stored in the node. The
last node created in the extension process is called qlast. This
process is done by EXTEND AND STORE STATE().

In the backward tree computation however, it is not impor-
tant to keep track of over-deflections of plants as the knowl-
edge of over-deflection of a plant in the backward tree does
not provide any information on how it would behave when
traversed in the forward direction, which is more relevant to
our problem. Hence, a simple extension operation is performed

by EXTEND() which simply ignores the presence of the
plants, and only checks for rigid body collisions. The purpose
of the backward tree would then be to serve as a compass
for the forward tree to grow towards. An important point that
is brought about by the behavior of the backward tree is that
these RRT graphs are direction variant, meaning that a forward
traversal on an edge is not equivalent to the reverse traversal
on that edge. Direction invariance on edges would be the case
for simple collision checking, but for our case where more
complex constraints are to be checked, this invariance does
not hold. Our algorithm will therefore be complete only when
we have checked for any constraint violations in the forward
direction of each edge, which has been explained in more
detail later below.

In this procedure, the backward tree is grown with qlast
as its target node. The ”success” of this step is monitored
and decided by whether qbwd last = qtarget. If its a success,
that means the forward and backward trees are connected by
qbwd last and a path exists between qinit and qgoal. Now it
must be noted that although a path exists, it may not be valid
as the forward path along the backward tree (reverse direction
along the backward tree) may not be valid. This checking
is done by CHECK FULL FWD PATH, which traverses the
backward tree in the reverse direction (from qbwd last to qgoal).
If any constraint violation is found, the forward tree is grown
up to the node where the violation occurred, excluding it. The
node that caused the violation is deleted and the remainder
of the backward tree is retained. It returns the status of the
operation and the entire forward path if it exists. If the status
of the operation is true, that means a valid forward path exists
and a smoothing operation is performed on the noisy path
before returning it. If not, then the above steps are continued
until success. The smoothed result would be the final output
of our algorithm, representing a valid path between source and
goal such that plants are deflected to get to the goal, but within
their limits.

In a gardening scenario, the manipulator must be able
to reach its goal configuration from its initial configuration
and then find a path to its next goal or back to its initial
configuration, corresponding to picking the object of interest
and dropping it in a box. This algorithm can be run for those
scenarios as well, by varying which configuration is the initial
state and which one becomes the final state.

C. Planning under uncertainty

The planning task mentioned previously has been extended
to planning under uncertainty in an effort to make it more
difficult for the planner. We created the task of planning using
a single planner simultaneously in multiple parallel random
worlds under a particular policy.

Multiple worlds were randomly generated during run-time,
thereby introducing uncertainty. The randomness that can be
introduced here are regarding the placement of the branches,
their natural deflections, the placement of the plant, the number
of branches per stem, the number of vertical stems etc. The
planner sees environments that it has never seen before and



Environment Cost Ignore All (Type 1) Avoid All (Type 2) Our method
Path Cost 1.8121 (0.0426) 3.8783 (1.3698)

Env1 Deflection Cost 4.2711 (0.8146) Undefined 0 (0)
Total Cost 6.0832 (0.8572) 3.8783 (1.3698)
Path Cost 1.6105 (0.0521) 1.7586 (0.0524) 1.6975 (0.0256)

Env4 Deflection Cost 9.7681 (35.4545) 0 (0) 0 (0)
Total Cost 11.3786 (35.5066) 1.7586 (0.0524) 1.6975 (0.0256)
Path Cost 1.5964 (0.0153) 1.8823 (0.4802) 1.9393 (0.1386)

Env5 Deflection Cost 2.7168 (0.6212) 0 (0) 0 (0)
Total Cost 4.3132 (0.6365) 1.8823 (0.4802) 1.9393 (0.1386)

TABLE I
COMPARISON OF OUR ALGORITHM AGAINST BENCHMARKS FOR A SINGLE STEM SINGLE WORLD SCENARIO FOR α = 0.1 AND DEFLECTION LIMIT 0.3

RAD.

Environment Cost Ignore All (Type 1) Avoid All (Type 2) Our method
Path Cost 1.7145 (0.1222) 1.8796 (0.1498) 1.6210 (0.1142)

Env1 Deflection Cost 2.8535 (3.7634) 0 (0) 0 (0)
Total Cost 4.5680 (3.8856) 1.8796 (0.1498) 1.6210 (0.1142)
Path Cost 1.5831 (0.0513) 2.7836 (1.0559) 2.2128 (0.1464)

Env2 Deflection Cost 4.4401 (4.2118) 0 (0) 0 (0)
Total Cost 6.0232 (4.2631) 2.7836 (1.0559) 2.2128 (1.7271)
Path Cost 1.6372 (0.0513) 3.9327 (1.2501)

Env3 Deflection Cost 3.6096 (8.4058) Undefined 0 (0)
Total Cost 5.2468 (8.4571) 3.9327 (1.2501)
Path Cost 1.6974 (0.1257) 1.7623 (0.2023) 1.7188 (0.2052)

Env4 Deflection Cost 2.6073 (14.8046) 0 (0) 0 (0)
Total Cost 4.3047 (14.9303) 1.7623 (0.2023) 1.7188 (0.2052)

TABLE II
COMPARISON OF OUR METHOD AGAINST BENCHMARKS FOR A MULTI-BRANCH SINGLE WORLD SCENARIO WITH α = 0.1 AND DEFLECTION LIMIT 0.3

RAD.

tries to find a path from source to goal using a single planning
algorithm under a predefined policy. In our experiments, we
have considered a pessimistic policy, where a violation in
any one of the worlds is considered a violation in all the
worlds. To be more clear, we adjust this strictness to obtain two
policies that we further test and compare against benchmark
approaches. The first of these policies enforces strictness 95%
of the time, meaning that 5% of the constraint violations are
not reported to the planner. The second policy that has been
used is when the strictness is reduced to 30%, which is much
more lenient than the first policy. The choice of this kind of
sampling based policy can be justified by relating it to the
epsilon greedy approach in reinforcement learning, where a
trade-off is reached between exploration and exploitation.

D. Experimental Conditions, Comparison and Metrics

1) Software and technologies used: The simulator that we
have used in all our experiments is PyBullet [17]. PyBullet
provides an excellent simulation environment to test motion
planning algorithms in various obstacle laden worlds. The
programming and implementation was done in Python with
the help of its associated libraries.

2) Creation of a plant in simulation and robot used:
To get a good idea about the performance of our planning
algorithms, we must first create a plant in simulation that
behaves similar to how a plant would behave when deflected,
or when an external force is applied on it. We used the
Unified Robotic Description Format (URDF) to create an
initial model of a single stemmed plant 1. Plant link joints
were created with two revolute joints permitting movement in

two axes. More complex plants with multiple stems, branches
and natural deflections were created programmatically using
the PyBullet’s API. Programmatic generation gives us the
ability to create randomized versions of a plant based on the
number of branches per stem, number of stems and the natural
deflections of the branches and stems.

An external torque was applied on the links proportional to
the amount of deflection incurred. This gives the plant link a
method to recover from a deflection caused by an external
force. The angular deflection was measured as the relative
difference of orientations of each link, thereby resulting in
the relative deflection of a link with respect to its parent link.
These calculated values were measured for over-deflection by
comparing it against a preset deflection limit.

The robot manipulator that we have used in this experiment
is the KUKA IIWA robot. The URDF model of this robot is
avilable alongside the PyBullet planning library [18].

3) Benchmarks and metrics: To truly understand how well
our method is performing, we compare it with two benchmark
methods. The first of these two methods (Type 1), can be
described as ignoring all plants to get to the goal, meaning
that the planner ignores the amount of deflection each plant is
undergoing. The second of these methods (Type 2) avoids all
plants, that is, avoids all contact or collision with plants.

To quantify the performance of these methods, we formulate
a cost function that taxes any given approach on its end
effector path length and the total amount of over-deflection
encountered. It can be defined as follows:

C(p) = Λ(P ) + αΦ(P ) (1)



Averaged Readings Across Worlds Worst-case Reading Across Worlds
Envs Cost Ignore All Avoid All Our method (95%) Our method (30%) Ignore All Avoid All Our method (95%) Our method (30%)

Path Cost 1.5299 (0.0018) 4.0304 (0.4739) 5.6194 (1.1517) 1.5299 (0.0018) 4.0304 (0.4739) 5.6194 (1.1517)
Env1 Deflection Cost 0.3212 (0.1113) Undefined 0.4260 (0.4306) 0.0192 (0.0029) 1.2688 (0.4453) Undefined 1.7042 (1.7227) 0.0763 (0.0116)

Total Cost 1.8511 (0.1131) 4.4564 (0.9045) 5.6386 (1.1546) 2.7987 (0.4471) 5.7346 (2.1966) 5.6957 (1.1633)
Path Cost 2.0099 (0.0338) 3.3342 (0.2174) 2.2085 (0.0624) 2.1026 (0.1911)) 2.0099 (0.0338) 3.3342 (0.2174) 2.2085 (0.0624) 2.1026 (0.1911)

Env2 Deflection Cost 3.4262 (2.1600) 0 (0) 0 (0) 0 (0) 9.1069 (2.6022) 0 (0) 0 (0) 0 (0)
Total Cost 5.4361 (2.1938) 3.3342 (0.2174) 2.2085 (0.0624) 2.1026 (0.1911) 11.1168 (2.6360) 3.3342 (0.2174) 2.2085 (0.0624) 2.1026 (0.1911)

TABLE III
QUANTITATIVE COMPARISON OF OUR MODEL WITH BENCHMARKS IN A FOUR WORLD SCENARIO WITH α = 0.1 AND DEFLECTION LIMIT SET TO 0.3 RAD.

where, p denotes a path from the source node (qinit) to goal
node (qgoal), C(p) denotes the total cost of traversing path p,
Λ(p) denotes the end effector path length and Φ(p) denotes
the amount of over-deflection beyond the limit. The weigting
constant α is used to adjust the contribution of the over-
deflection cost to the total cost.

Method Path length Deflection over the limit
Ignore all plants (Type 1) Small Large
Avoid all plants (Type 2) Large 0
Our method Moderate 0

TABLE IV
EXPECTED PERFORMANCE ANALYZED USING THE COST FUNCTION

METRIC.

We hypothesize that their behavior must align with table
IV. In this table, it can be seen that Type 1 must yield a small
path length but a large over-deflection cost, thereby yielding
a large total cost. Type 2 however, will yield a large path
length but zero over-deflection as it avoids plants altogether,
leading to a large total cost. Our method will perform the most
efficient compared to these two approaches when we consider
the total cost. The path length cost will lie in between type 1
and type 2, with zero over-deflection cost as no plant should be
deflected beyond its limit. For environments that have either
the initial configuration and/or final configuration in contact
with the plant (not necessarily violating any constraint), the
Type 2 benchmark cost would be undefined.

III. RESULTS

A. Planning in a single world environment

This is the planning task of moving a robotic arm from start
to goal without violating any constraints in a single world.
Table I shows a quantitative comparison of our method with
the benchmarks for plants with single stems only, as described
in figure 1. Table II describes the quantitative results that we
have obtained using a multi-branch plant (fig. 1).

The results in table I have been calculated based on five
trials per method per environment. The mean of the data
collected in these five trials have been shown for each cost
along with their respective variances in parenthesis. It can
be observed that environments 1 and 4 clearly follow the
pattern in hypothesized in table IV. Environment 5 shows
some deviation in the mean path cost, where our method
is larger than the Type 2 benchmark path cost. However,
the variance of the path cost is larger for Type 2, with
our method having the lowest. Therefore, this deviation in
path cost can be explained by a lower number of trials

used in this experiment and the probabilistic nature of the
RRT. Some video recordings of our method at work in this
scenario can be found here: https://youtube.com/playlist?list=
PLoBFj4IxcH77DDflsiRRq8lKDZOxAwiEm.

Similarly, table II shows results for a multi-branch single
world scenario with twenty trials conducted per method per
environment. In other words, these results were obtained when
our planner was tasked with planning around plants with
multiple stems and multiple branches. The plants’ shape and
configuration were generated randomly. Our method obtains
the lowest mean total cost when compared against the bench-
marks. The variances are not the lowest for environments 2 and
4, but they are quite comparable to the lowest in each environ-
ment. Some video recordings of our simulation experiments
for the multi-branch case can be found here: https://youtube.
com/playlist?list=PLoBFj4IxcH76gsr22tLmSk00yhLAzZxqt.

B. Planning in a multi world environment

For the case of planning in a multi world environment, we
created a simulation of multiple parallel worlds, comprising
of randomly generated plants. All the parallel worlds use the
same planner to find a path from start to goal, but due to
the uncertainty in each world, they may encounter constraint
violations at different time steps. To deal with this, we define a
policy that helps us make a decision. The environments created
in our experiments were easy in the level of difficulty as more
complex environments require much higher memory with our
current implementation. In these experiments, we have fixed
the number of branches per stem and number of vertical stems.
However, in the future, these should be ideally randomized as
well to create truly uncertain complex environments.

As mentioned earlier, we follow a varying pessimistic pol-
icy. We have used two levels of pessimism, 30% and 95%, and
we compare them against the previously defined benchmarks,
in a multi world scenario. For Type 1 method, the policy would
be to ignore all plants in every world. However, for Type 2,
the policy would instead be to avoid all plants in all worlds.
This would sometimes be impossible as there could be no way
of finding a valid path in two worlds when a valid path exists
only in one and no valid path at all in the other.

In the results shown in table III, four worlds have been
considered with three trials per environment per method. The
mean and variance for each method has been shown in the
table. The averaged readings comprise of averaging the costs
across the worlds and the worst-case readings comprise of the
largest costs among all worlds. Environment 2 is in line with
our hypothesis. The Type 1 benchmark occupies the least path

https://youtube.com/playlist?list=PLoBFj4IxcH77DDflsiRRq8lKDZOxAwiEm
https://youtube.com/playlist?list=PLoBFj4IxcH77DDflsiRRq8lKDZOxAwiEm
https://youtube.com/playlist?list=PLoBFj4IxcH76gsr22tLmSk00yhLAzZxqt
https://youtube.com/playlist?list=PLoBFj4IxcH76gsr22tLmSk00yhLAzZxqt


cost among all methods. The deflection costs are zero for Type
2 benchmark and our methods as well. It can be noticed that
even though the strictness has been reduced, the planner does
not try to make use of it in this case and attempt to reach
the goal in a shorter path with over-deflections. These costs
are dependent on the kind of environment the planners are
tested on, and as this is an easy environment, there will be
less pressure to over deflect and a zero deflection cost can
happen more frequently than with a complex environment.
Environment 1 however slightly deviates from our hypothesis.
In both averaged readings and worst case readings, the deflec-
tion cost is higher for our method (95%). Moreover, the path
cost for our method with 30% strictness is higher than that of
the 95% strictness. Environment 1 is a slightly more complex
environment when compared to environment 2. The number of
trials made were limited to three per method per environment
due to high program run-times. The results could be expected
to fall in line with out hypothesis with a larger number of trials.
With the presence of additional time, this could be tested for
a higher number of worlds and more complex environments.
Video data depicting simulation experiments for the multi
world case can be found here: https://youtube.com/playlist?
list=PLoBFj4IxcH76rV1UOF0yK0F99g6O3QsPF.

IV. CONCLUSION

The task of motion planning around plants has been studied
in this independent study course and a planning framework
was created based on the bi-directional RRT algorithm. We
have shown through our experiments that our method is able to
outperform benchmark approaches for different environments
with varying difficulty, thereby proving its robustness. In
addition to the deterministic approach, our experiments with
planning under uncertainty also showed positive results with
regards to our method’s performance. However, one thing that
is yet to be proven is our method’s ability to work in the
real world, and what modifications could be made to fix any
discrepancies. Future work in this experiment could include
testing our algorithm on more difficult uncertain environments
in a multi world scenario and comparing various policies for
this task. It would also include using more realistic plant
models during simulations and testing it on physical hardware.
Moreover, planning under uncertainty could be used alongside
a shape completion algorithm from a perception system to
help plan in the presence of occlusions. Lastly, a faster and
more memory efficient implementation of this algorithm can
be made, with a focus on more efficient loading and saving
of states.

REFERENCES

[1] S. LaValle, “Motion planning: The essentials,” Robotics & Automation
Magazine, IEEE, vol. 18, pp. 79–89, 03 2011.

[2] N. J. Nilsson, “Shakey the robot,” 1984.
[3] J. Mirabel, F. Lamiraux, T. L. Ha, A. Nicolin, O. Stasse, and S. Boria,

“Performing manufacturing tasks with a mobile manipulator: from
motion planning to sensor based motion control,” in 2021 IEEE 17th In-
ternational Conference on Automation Science and Engineering (CASE),
pp. 159–164, IEEE, 2021.

[4] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Benchmarking sampling-based motion planning pipelines
for wheeled mobile robots,” 2021.

[5] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[6] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” tech. rep., 1998.

[7] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring ran-
dom trees,” Tech. Rep. MIT-CSAIL-TR-2013-021, Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA, August 2013.

[8] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995–1001
vol.2, 2000.

[9] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” in Proceedings
of Robotics: Science and Systems (RSS ’08), June 2008.

[10] Y. Bao, L. Tang, and D. Shah, “Robotic 3d plant perception and leaf
probing with collision-free motion planning for automated indoor plant
phenotyping,” 01 2017.

[11] N. Ohi, K. Lassak, R. Watson, J. Strader, Y. Du, C. Yang, G. Hedrick,
J. Nguyen, S. Harper, D. Reynolds, C. Kilic, J. Hikes, S. Mills,
C. Castle, B. Buzzo, N. Waterland, J. Gross, Y.-L. Park, X. Li, and
Y. Gu, “Design of an autonomous precision pollination robot,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7711–7718, 2018.

[12] L. Luo, H. Wen, Q. Lu, H. Huang, W. Chen, X. Zou, and C. Wang,
“Collision-free path-planning for six-dof serial harvesting robot based
on energy optimal and artificial potential field,” Complexity, vol. 2018,
pp. 1–12, 11 2018.

[13] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2, pp. 500–505, 1985.

[14] N. Jakobi, P. Husbands, and I. Harvey, ““noise and the reality gap: The
use of simulation in evolutionary robotics,”,” vol. 929, pp. 704–720, 01
1995.

[15] I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and
D. Fox, “Model-based generalization under parameter uncertainty using
path integral control,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2864–2871, 2020.

[16] G. Williams, A. Aldrich, and E. Theodorou, “Model predictive path
integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, pp. 1–14, 01 2017.

[17] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning.” http://pybullet.org,
2016–2021.

[18] C. R. Garrett, “Pybullet planning.” https://pypi.org/project/
pybullet-planning/, 2018.

https://youtube.com/playlist?list=PLoBFj4IxcH76rV1UOF0yK0F99g6O3QsPF
https://youtube.com/playlist?list=PLoBFj4IxcH76rV1UOF0yK0F99g6O3QsPF
http://pybullet.org
https://pypi.org/project/pybullet-planning/
https://pypi.org/project/pybullet-planning/

	Introduction
	Our Planning Algorithm
	Characterizing the state of the plant
	The Planner: Modified Bi-Directional RRT Algorithm
	Planning under uncertainty
	Experimental Conditions, Comparison and Metrics
	Software and technologies used
	Creation of a plant in simulation and robot used
	Benchmarks and metrics


	Results
	Planning in a single world environment
	Planning in a multi world environment

	Conclusion
	References

