
ROB 550 Report
Team 3 (Afternoon)

Anirudh Aatresh Devansh Agrawal Shreya Phirke

Abstract—Autonomous robot operation is very important
in a stand-alone cyber-physical system. A robot must be
capable of moving through complex surroundings to explore
and get to its destination. In this report, we consider the task
of designing a robotic system that is capable of performing
control tasks, localization and mapping, and exploration. We
study various scenarios where the robot needs to consider
sensor feedback to achieve a particular goal. For robust
velocity and position control, we build low-level and high-
level closed-loop controllers that are capable of achieving
this. Further, we build a framework to perform simultaneous
localization and mapping using LIDAR scan data, that is fur-
ther processed to perform reliable planning and exploration.
We demonstrate the working of our algorithms in practice
by running them in real-time on the MBot for a variety of
tasks and environments.

I. INTRODUCTION

NUMEROUS industrial applications require robots
that can work autonomously. Incorporating au-

tonomous movement into a robot’s design is crucial to
building systems that can operate without human inter-
vention. Giving a robot high-level commands such as
going to restaurant ’A’ and returning with some food
should be sufficient information for the bot to get to the
restaurant safely and back, provided it knows where the
target locations are. While this sounds like an interesting
prospect, several unforeseen factors affect the planning and
control of the bot, and how the robot performs the tasks
assigned to it.

Sensors are the robot’s sense organs (analogous to the
sense organs of humans) and provide it crucial information
about what is happening in its environment and sometimes
about how the environment is reacting to its actions. This
information is used as a form of feedback for the robot to
understand the consequence of its actions and if additional
corrections must be made to achieve its goal. This form of
controlling the robot using feedback is known as closed-
loop control and finds a wide variety of applications in
control systems. The opposite of closed-loop control is
open-loop control where it is assumed that no corrections
will be needed once actuated.

A sensor that is of particular interest to us is the
LIDAR (Laser IDentification and Ranging) module that
is capable of producing representations of its environment
with sufficient detail for a robot to use for navigation. We
use the 2 dimensional version of it to build a map of the
robot’s surroundings, which it uses to first identify its pose

within the map and further to traverse through it. This
entire process can be termed as Simultaneous Localization
and Mapping (SLAM).

While SLAM provides the robot information about what
is present in its surroundings, it must be told what path
it must take within this constructed map. This is where
planning algorithms come in such as A-star and rapidly
exploring random trees (RRT). Using these algorithms
a robot can effectively map its surroundings and move
to various locations of the map accurately at the given
velocity. Moreover, it can self identify its position based
on its surroundings and perform exploration tasks if need
be.

In this report, we detail the construction of this system,
wherein we develop a robot that is capable of performing
mapping and planning while also adhering to low-level
set-points such as velocity and position control. Section II
covers concepts and implementation of motion and odom-
etry, section III talks about our SLAM implementation,
section IV details algorithms in planning and autonomous
exploration and section V concludes this report.

II. MOTION AND ODOMETRY

A. Characterizing the Wheel Speed
Characterizing the speed of the robot is critical in

designing an open-loop controller. This is because the
control signal to the motors from the BeagleBone Blue
(BBB) is a pulse width modulation (PWM) command that
is in the range of [−1, 1]. We have to convert PWM signals
into wheel velocities for the open-loop controller. This can
be represented mathematically as:

vleft = fleft(pleft) (1)
vright = fright(pright) (2)

where v{·} represents the wheel velocity, p{·} is the
PWM control signal given to a particular wheel and f{·}
is the function that describes their conversion. In our
experiments, we have collected data to estimate f . More
specifically, for each wheel, we calculate the loaded wheel
velocity for an input PWM control signal, which is varied
from −1 to 1 at a resolution of 0.05. Further, we fit a
piecewise linear curve to this data that is used to approxi-
mate f . The data points collected and corresponding curve
fit has been shown in figure 1.

It can be seen that the linear curves for each of our
robots are piecewise in nature with symmetry about the

Y-axis. Moreover, these curves exhibit some distinct and
unique features. The slopes (m) and Y-intercepts (c) of
each of the curves (y = mx + c) represent the behavior
of each motor. This comparison can be made between
two motors on the same robot and between two motors
each mounted on a different robot. When the data is
plotted as PWM values against speed, the slopes differ
by ∼ 0.3 and Y-intercepts by ∼ 0.05. The sources of
these deviations include variations in characteristics of
each motor and encoder. The equations obtained from this
curve fitting were further used to design an open-loop
velocity controller.

Using the collected data, we created a map between
desired wheel speeds and required PWM command. To
account for deadband, the following relationship is used

pcmd = f−1(vdes) =

0 if vdes = 0

m1vdes + c1 if vdes > 0

m2vdes + c2 if vdes < 0

(3)

where m1,m2, c1, c2 are parameters we calibrated by
least-squares fitting.

1.0 0.5 0.0 0.5 1.0
Duty Cycle

1.0

0.5

0.0

0.5

1.0

Sp
ee

d
[m

/s
]

LEFT_MOTOR
DEVANSH
SHREYA
ANIRUDH

1.0 0.5 0.0 0.5 1.0
Duty Cycle

1.0

0.5

0.0

0.5

1.0

Sp
ee

d
[m

/s
]

RIGHT_MOTOR
DEVANSH
SHREYA
ANIRUDH

Fig. 1. Calibration curves for our robots.

TABLE I
LEFT AND RIGHT MOTOR CALIBRATIONS

User Left Motor Calibration Right Motor Calibration

Anirudh 1.02867(v) + 0.09117 1.1124(v) + 0.08181
Devansh 0.72441(v) + 0.04711 0.76522(v) + 0.00550
Shreya 1.06783(v) + 0.03394 1.07096(v) + 0.01308

B. Implementing the Open-Loop and Closed-Loop Control

• Open-loop controller design: To have our robot move
at a particular velocity using an open-loop controller, we
use the curve obtained from the previous task to invert the
transition function f to find corresponding PWM values
from setpoint velocities. It was observed that the robot
completed a skewed square when it was directed through
the open-loop controller to complete a perfect square. We
attribute this behavior to the inherent imperfections of

the surface and motors that can cause deviation in the
velocities.

• Closed-loop controller design: For the closed-loop con-
troller, we implemented a PID control loop that performs
a proportional - integral - derivative computation on the
error between the setpoint and actual velocities, with a
feedforward term based on the open-loop controller. In
our experiments, the PID controller was tuned by choos-
ing a convenient setpoint and gradually varying kp until
small oscillations were observed. kd was then increased
to reduce these oscillations after which the ki value was
increased until the steady-state error approached zero. We
assumed the PID controller was tuned when the steady-
state value was within a particular permissible error band
around the setpoint value.
We modify the conventional PID framework by adding
low pass filters to filter out noise in encoder readings and
outputs from the closed-loop controller. Furthermore, we
created a parallel PD controller and I controller flow for
a more simple resetting mechanism of the I controller.
This allows us to control the characteristics of the step
response. The PID parameters have been shown in the
table II.

TABLE II
PARAMETERS FOR THE PID CONTROLLER AND LOW PASS FILTERS FOR

WHEEL VELOCITY CONTROL

kp 2.0
ki 0.05
kd 0.05

integrator limit 1.0
time step of LP filters 0.02 seconds

time constant of LP filters 0.5 seconds

C. Odometry

Odometry can be used to localize the robot and charac-
terize its pose using position and orientation calculations.
In our case, we found the robot’s position in (x, y)
coordinates and its heading θ.

If we assume that the left wheel of the robot has moved
a distance ∆sL and right wheel has moved a distance ∆sR
such that ∆sL ≤ ∆sR, we can express them as:

∆s =
∆sL +∆sR

2
; α =

∆sL −∆sR
b

(4)

where the R is the radius of rotation and α = ∆θ is the
angle of arc swept by the robot. For short distances of
movement, we can approximate the arc length to straight
line joining initial and final positions. The change in x and
y coordinates can be found as:

∆x = ∆s cos(θ +
∆θ

2
); ∆y = ∆s sin(θ +

∆θ

2
) (5)

Hence, the new pose can be expressed as:

[x′, y′, θ′]T = [x, y, θ]T + [∆x, ∆y, ∆θ]T (6)

The odometry model was validated by checking the dis-
tance traveled along X and Y directions along a ruler and
heading using a protractor. Our odometry model was found
to be accurate enough and no correction parameters were
applied. However, this model was checked for corrections
once and not repeatedly in the future.

D. Gyro Sensor Fusion

The gyrodometry algorithm proposed by Borenstein et
al. in [1] proves that fusing odometry and gyro data
can help alleviate non-systematic errors produced due to
sudden bumps or disturbances on the surface. When such
an event is encountered, there is a clear difference in the
estimated angle values by the gyroscope and that through
odometry, thereby producing an error in measurement. The
gyrodometry algorithm used to reduce this error has been
shown in algorithm 1.

Algorithm 1: Gyrodometry algorithm.
Data: Initialize θthresh
At every step of computing odometry values,

Compute ∆θodo from the odometry calculations.
Compute ∆θgyro from consecutive readings of

tait-bryan angles.
θG−O = ∆θgyro −∆θodo
if |θG−O| > θthresh then

θ′ = θ +∆θgyro
else

θ′ = θ +∆θodo
end

The parameters used in our odometry and gyrodometry
computation are the wheel base distance b and the θthresh.
The wheel base distance was measured using a tape mea-
sure to be 0.1584 m. θthresh was estimated by performing
the experiments mentioned in [1]. We used an insulated
5 mm diameter cable as a bump to find an appropriate
θthresh. Our experiments showed that the value (0.105 rad)
mentioned in [1] also worked well for us.

E. Robot Frame Velocity Controller

The velocity controller in the robot frame was designed
such that input commands for forward and turn velocity are
used to compute the left and right wheel velocities. Given
a commanded transnational velocity v, and commanded
angular velocity ω, we computed the desired speeds (tech-
nically the ground speed of the wheel if the robot were
travelling straight) of the left and right wheels as

vR = v + w
b

2
, vL = v − w

b

2
(7)

where v[·] is the speed of each wheel, and b is the wheel
base distance.

We noticed that when the commanded translational
velocity is changed rapidly, the wheel tended to slip on
the ground, which meant that the encoder readings were

thrown off. To avoid this, we introduced a first-order
low-pass filter on the translational velocity commands,
with a time constant of 0.5 seconds. We decided not to
implement this for the angular speed, as wheel slip was not
as significant of an issue, and for the controller to converge
to the desired headings, fast response on the angular rate
controller was desirable.

Furthermore, for precise positioning, it was desirable for
the robot to stop rapidly when commanded to do so. As
such, if the commanded speed was lower than the filtered
output, we short-circuited the filter and send the smaller
velocities directly. The parameters that were used for the
controller has been shown in table III.

TABLE III
PARAMETERS OF THE PID ROBOT FRAME VELOCITY CONTROLLER.

kp of turn controller 0.7
ki of fwd and turn controller 0.0
kd of fwd and turn controller 0.0

time step of LP filters 0.02 seconds
time constant of LP filters 0.5 seconds

F. Motion Controller

In this section, we implemented a motion controller
that combined all the information received from previous
sections. We designed a motion controller that will make
our robot move through a series of waypoints at a given
setpoint forward and turn velocity.

The motion controller is implemented using a state-
machine, with three states: IDLE, TURN, STRAIGHT.
The robot is initialised in IDLE state, where the com-
manded v, ω = 0. When a new message is received, it
is first parsed, and stored in memory. Then, the robot
enters the TURN and orientates itself to point in the
direction of the next waypoint. Once the angle is within
0.05 rad, the controller switches to the STRAIGHT state.
This controller drives at ωmax, and then switches to
a proportional controller to smoothly stop at a desired
heading.

Despite many attempts at tuning it was difficult to
achieve a precise turn controller, especially at high rotation
speeds. Somewhat surprisingly, this was primarily due to
the robots inability to turn at low-speeds - the deadband
this introduced made it difficult to precisely calibrate the
proportional turn controller. While better modelling of the
robots turning capabilities, and smarter controllers, might
be able to produce a good turning controller, we were
able to achieve desired performance using the straight
controller, described next.

Once the turn controller exits, the robot switches to the
STRAIGHT mode, where from an current state (x, y, θ),
the robot is targetting to reach the position (xT , yT). The

Fig. 2. Plots for 0.25m/s (left), 0.5 m/s (middle), 1m/s (right).

Fig. 3. Plots for π/8 rad/s (left), π/4 rad/s (middle), π rad/s (right).

velocity commands were computed as follows:

θT = arctan

(
yT − y

xT − x

)
(8)

r =
√
(x− xT)2 + (y − yT)2 (9)

rsat = min(r, 1.0 m) (10)

vcmd = rsatvmax cos
2(θ − θT) (11)

ωcmd = −kω(θ − θT) (12)

In words, the translational velocity is a proportional to
the distance to go, but is saturated to vmax and reduced
(by a factor of cos2) if the angle between the current
heading the target position is large. The angular velocity is
proportional to the heading error. We used kω = 2.0. It is
not difficult to show that this controller is asymptotically
stable to the desired position, assuming |θ − θT | < π. At
the higher translational speeds, we also introduced a trape-
zoidal acceleration curve, to avoid initial wheel slippage.
The STRAIGHT mode is exited when the position error
satisfies |x − xT | ≤ R and |y − yT | ≤ R, where we set
R = 10 cm. If an additional waypoint is available, the
TURN mode is selected, else the IDLE mode is selected.

A plot of our robot’s dead reckoning estimated pose
as it attempts to make a square of side 1 m is shown in
figure 4. A plot of the robot’s linear and rotational velocity
as it drives one loop around the square can be seen in
figure 5. It is clear that the robot does not return exactly
to the starting point after four revolutions and is off by
about 15 cm. Additional sensors or improved odometry
methods would be required to improve this. In figure 4 the
robot starts at (0,0). The red dashed square indicates the
reference path, and the green squares denote the tolerance
for the STRAIGHT controller mode.

0.0 0.2 0.4 0.6 0.8 1.0
x position

0.0

0.2

0.4

0.6

0.8

1.0

y
po

sit
io

n

Robot's path when completing a square four times.

Ideal path
Odometry output (X, Y)
Checkpoint (0.2m square)

Fig. 4. Trajectory for four revolutions around the square.

III. SLAM IMPLEMENTATION

A. Mapping and Occupancy Grid

We divide the observable 2D space into a grid for
convenience and denote the occupancy of each cell through
some measurement. To convey how certain we are about
the occupancy of a cell, we denote the probability that a
cell is occupied by p(occ(x, y)) and probability that a cell
is free by p(¬ occ(x, y)). The log odds of the occupancy
of a cell can be expressed as:

log (o(occ(i, j))) = log

(
p(occ(i, j))

p(¬ occ(i, j))

)
∈ [−∞,∞]

(13)
The map constructed by our implementation when run
on obstacle_slam_10mx10m_5cm.log has been
shown in figure 6.

B. Monte-Carlo Localization – Action Model

The state of our robot at any time t can be described as a
3-dimensional vector, xt = [x, y, θ]T . This state changes
as various inputs are applied to the robot. The action

0 5 10 15 20 25
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

Fo
rw

ar
d

ve
lo

cit
y

(m
/s

)

Plot of robot forward velocity when completing a square once at 0.25m/s and pi/4 rad/s.
Low pass filtered reference signal
Robot forward velocity from odometry

0 5 10 15 20 25
Time (s)

0.2

0.0

0.2

0.4

0.6

0.8

Ro
ta

tio
na

l v
el

oc
ity

 (r
ad

/s
)

Plot of robot rotational velocity when completing a square once at 0.25m/s and pi/4 rad/s.
Reference signal
Robot rotational velocity from odometry

Fig. 5. Plot of the robot’s linear and rotational velocity as it drives one loop around the square.

Fig. 6. Mapping on obstacle slam 10mx10m 5cm.log.

model of the robot describes the state transition function
of the system, describing how the system transitions to
a new state given its current state and input signal. The
probability of transitioning to state xt from xt−1 and
control input ut is p(xt|xt−1, ut).

We have used the odometry action model to calculate
this distribution. In this model, the odometry output is
used as the input control signal. The path to be taken
to the destination point is described through an initial
rotation (rot1), a translation (trans) and a final rotation
(rot2). Through the odometry model, we can find how
much the robot must rotate and translate by calculating
the error for each of these quantities. This calculation has
been shown in eqs. (14) - (15).

δrot1 = atan2(dy, dx)− θ, δtrans =

√
dx2 + dy2 (14)

δrot2 = dθ − δrot1 (15)

where, dx, dy and dθ are the errors in pose from initial
pose [x, y, θ]T .

We then sample new data for each particle from a
normal distribution centered around δrot1, δtrans and δrot2
and control uncertainty using parameters k1 and k2.

ˆδrot1 ∼ N (δrot1,
√
k1 ∗ rot1) (16)

ˆδtrans ∼ N (δtrans,
√
k2 ∗ trans) (17)

ˆδrot2 ∼ N (δrot2,
√
k1 ∗ rot2) (18)

TABLE IV
UNCERTAINTY PARAMETERS USED IN OUR ACTION MODEL.

Uncertainty parameter Value
k1 0.01
k2 0.01

We can now find new potentially feasible poses by
computing the x, y and θ by the following equation:

[xnew, ynew, θnew]
T = [xold, yold, θold]

T+

[δ̂trans cos(θold + δ̂rot1), δ̂trans sin(θold + δ̂rot1), δ̂rot1 + δ̂rot2]
T

In essence, this amounts to sampling poses from the
distribution p(xt|xt−1, ut). The uncertainty parameters
k1 and k2, as shown in table IV, were chosen by looking
at the spread of the particles on a plotted map. k1 was
varied to adjust the amount of spread of particles in the
heading angles. This would amount to adjusting the arc
length of the spread. k2 was varied to adjust the the
longitudinal spread of the particles.

C. Monte-Carlo Localization – Sensor Model and Particle
Filters

The sensor model describes what the sensor measure-
ment will look like from the current state. More specifi-
cally, the sensor model produces a probability distribution
over various sensor measurements given a particular state
and map, described by p(zt|xt,m).

Table V shows the average time taken by our imple-
mentation to update the particle filter for different number
of particles. The collected readings were averaged across
multiple trials for the same number of particles to give a
less noisy estimate.

TABLE V
TIME TAKEN TO UPDATE THE PARTICLE FILTER

Number of particles Avg. Time taken (s)
100 0.0342
300 0.0722
500 0.0950
1000 0.1874

Considering practicality, the maximum number of parti-
cles that can be handled by our implementation is 20, 000.

TABLE VI
ERROR STATISTICS WHEN COMPARING ESTIMATED SLAM POSES AND

GROUND TRUTH POSES FOR 50 AND 200 PARTICLES.

50 particles 200 particles

Max Error x 0.2906 0.4526
Max Error y 0.3898 0.5815
Max Error θ 1.2127 1.2329
RMSE x 0.1192 0.1911
RMSE y 0.1743 0.2526
RMSE θ 0.1314 0.1928

Our method was able to progress through its update phase,
but was too slow for all practical purposes, requiring
approximately 2 seconds for each update. Considering
our motion controller is updated at 50 Hz, or 20 ms,
even with 100 particles, our particle filter is too slow. In
our experiments, we noticed a substantial improvement in
tracking performance, when we used 50 particles, instead
of the default of 200.

The plot of 300 particles at each half length of the
square and after each right angle turn when run on
drive_square_10mx10m_5cm.log has been shown
in figure 7.

Fig. 7. Plot of 300 particles on drive square 10mx10m 5cm.log.

D. Simultaneous Localization and Mapping (SLAM)

The plot showing the pose error difference between
odometry and SLAM poses for x, y and θ components
can be found in figure 8. The block diagram of our SLAM
implementation has been shown in figure 9. The error
statistics and comparisons between the estimated SLAM
poses and ground truth poses can be found in figure 10
and table VI.

IV. PLANNING AND EXPLORATION

A. A-star Path Planning

Our A-star path planner follows the standard A-Star
algorithm. In an attempt to achieve better performance
(faster computation times), our implementation used the
following:

• At the start of the A-Star search, the start and target grid
nodes are found, and the entire search only uses the grid
cells, which are stored as int rather than float or

double. This avoids expensive floating point operations,
and helps eliminate floating point rounding errors.

• The open nodes list is implemented using a C++
std::priority_queue, and therefore expensive
sorting and searching operations are avoided.

In addition, we implemented a path simplification pro-
cedure: instead of generating individual waypoints at every
node along a straight line trajectory, this procedure simpli-
fies the path so only the corners of a trajectory are returned
in the robot_path_t struct. This simplification was
very useful, since our motion controller was tuned to
driving to a distant target, rather than a neighboring cell.

That said, due to a lack of time, we were not able to
implement the following features which we suspect would
also increase performance: improved memory allocation
and diagonal path planning.

The code’s run-times are listed in the table VII. We
can see that the computation times depend significantly
on the test case, and the mean computation time ranges
from about 4 ms to 15 ms, but were as large as 60 ms
on the empty grid. I believe the main reason for this was
large size of the empty grid, compared to the other cases.
This makes the memory allocation much larger, slowing
down the code.

TABLE VII
COMPUTATION TIMES FOR A-STAR PATH PLANNING. ALL COMPUTATION

TIMES ARE ROUNDED TO THE NEAREST MICRO-SECOND, AND REPRESENT
THE RESULT AFTER RUNNING THE A-STAR PATH PLANNING WITH 100
REPEATS. WHERE IT SAYS NA IS THE TESTS WHERE NO SUCH CASES

OCCURRED.

Successful Cases (µs) Min Mean Max Median Std dev

convex grid 3371 3953 10700 3471 1271
empty grid 8127 14747 60657 13456 8785
filled grid NA NA NA NA
maze grid 3508 4193 10470 3626 1304
narrow constriction grid 8146 9640 19411 9447 1861
wide constriction grid 8074 9401 20861 9060 1958

Failed Cases (µs) Min Mean Max Median Std dev

convex grid 2 1108 5941 890 1421
empty grid 0 2392 11056 3088 2662
filled grid 1 4 177 2 11
maze grid NA NA NA NA NA
narrow constriction grid 2 9325 67565 11860 10377
wide constriction grid 2 4 128 2 13

B. Map Exploration

The exploration algorithm that we have used is based
on frontier identification, and planning towards a selected
frontier. This algorithm is iterated on repeat until no more
frontiers can be detected. These steps can be described in
detail as:

• Frontiers are denoted as those cells in the occupancy
grid that border areas that are known to be free, and
areas whose occupancy is unknown. The breadth first
search (BFS) algorithm is used to iterate through all

Fig. 8. Pose error between odometry and SLAM poses. The green line shows the desired path, the blue lines shows the SLAM estimate, and the light-green
shows the odometry estimate.

Fig. 9. SLAM block diagram.

connected free space cells. Through 4-way connectivity,
each neighbor is checked and frontiers are grown until
they are of minimum length.

• Once all frontiers have been found for the current robot
pose, we consider a valid target position lying on the
straight line between our robot’s current position and any
reachable frontier cell on that frontier. We consider the
target position to lie on a fraction α ∼ 0.8 of that straight
line. The target heading was maintained to be the same
as the robot’s current heading.

• As the robot attempts to move towards this target position,
new scan information may cause the frontier to either
shift or get deleted (as new scan data can update the
log-odds of the frontier cells). Hence, this dynamically
updates the target position that must be reached as
the frontier that is being considered will be constantly
updated.

• At some point of time, there might come a stage when
there are no new frontiers available on the map. This
corresponds to the situation when the entire arena has

Fig. 10. Comparison of ground truth poses and slam pose estimates with
respect to time (s) for 50 particles.

Fig. 11. Planned Path (green) and Actual Path (blue)

been explored. At this stage, the robot is instructed to go
back to its starting point, also known as returning home.

This algorithm was implemented in frontiers.cpp

and exploration.cpp. The heart of
the implementation consists of a state
machine that goes through states such as
STATE_INITIALIZING, STATE_EXPLORING_MAP,
STATE_RETURNING_HOME and
STATE_COMPLETED_EXPLORATION. Our method
worked well for certain cases, but faced difficulty when
there were frontiers lying in parts of the occupancy grid
which were unknown (0 log-odds). This could be solved
by modifying our algorithm to calculate the target position
to lie in the nearest free cell that the robot can reach.
Moreover, the algorithm can be made more efficient by
selecting the frontier that is closest to the robot’s current
position instead of choosing the first frontier with a valid
path to it.

C. Map Exploration with Unknown Starting Pose
We considered a number of methods to perform self-

localization on a map, considering factors including com-
putation cost, capability, edge cases, and robustness against
slightly incorrect maps. In the end we decided on a fairly
simple algorithm:

1) We create 4n2 particles, where n is an integer.
2) We determine the limits of the free space in the provided

map (instead of the full grid) using a simple min/max
search. This gives us xmin, xmax and ymin, ymax.

3) The rectangular domain [xmin, xmax]× [ymin, ymax] is
uniformly gridded, and four particles are placed at each
grid point. Each of these four particles are initialised
with headings that are 90 degrees apart. I.e., at each grid
point, we initialise four particles, facing North, South,
East, West

4) Now the standard particle-filter based update is started,
and the robot starts acting with the following sequence
of actions, each lasting a set duration.

a) Spin clockwise for T1 seconds
b) If it is safe to do so, move forwards forwards for

T2 seconds, else continue spinning until it is safe
to move forwards.

c) Repeat until all particles are within a small region
of each other, i.e., the particle filter has converged.

5) Exit.
Here ”safe to move forwards” is defined as requiring

the LIDAR to read distances greater than L meters within
the 45 degrees of the straight direction.

The main benefits of this approach are:
• The motion controller is decoupled from the map that

is being generated, and more importantly, is decoupled
from the individual particle’s poses: as such, even if the
particles are all wrong, the robot will not crash into walls
(at least in theory)

• By placing four particles in each grid point, and using
a uniform grid of points, we are distributing our initial
guess of the robot pose very widely, and uniformly. As
opposed to random sampling, this avoids situations where
the samples do not cover a region of the map sufficiently.

• The robots path will never get stuck at one spot, since
it can always turn around enough to return on the path
that it came from. It can get caught in a loop/limit cycle,
(for instance bouncing between walls) but by randomising
T1, T2, this can be avoided.

We had some challenges in our implementation, and
while the above algorithm sometimes worked, it was not
very reliable. By inspecting the behaviour of the particles,
it seems the particles would very quickly (in about 3 or 4
iterations) down select to a single sub-region as the most
likely state of the robot. As such, the true state of the
robot is missed, and the algorithm fails to localise the robot
correctly.

This probably could be corrected by (A) increasing n,
(B) reducing the rate of convergence towards the best
estimate particle, and (C) improving the LIDAR-match
scoring algorithm to be faster and to use more of the
information that is available in the LIDAR scans, (D)
increasing the variance when re-sampling the particles or
(E) intentionally adding outliers when re-sampling, which
would help move the particle filters out of the local-
minima.

Furthermore, at the moment we place particles at a uni-
form grid. One alternative could be to use a triangulation
of the free space, and place guesses at the center-points
of the triangles. This would avoid placing initial particles
inside obstacles, which are obviously false placements, and
simply are a form of wasted particle. Another potential
extension is to use a wall-following type controller, instead
of the predefined sequence of movements.

V. CONCLUSION

In this report, we study controller design, SLAM, and
planning algorithms for the MBot and show them working
successfully in real-time and in different environments.
Through our experiments, we observe how open-loop
control can be inferior to closed-loop control and use this
observation to create controllers for our robot. Further, we
use our implementation of the simultaneous localization
and mapping (SLAM) algorithm to plan a path and guide
our robot through an environment. Our experiments and
observations have given us valuable insight into how these
algorithms can be implemented on embedded devices to
accomplish a particular task.

Although our implementation is capable of completing
the task at hand, we believe that there is further scope
to improve these algorithms. Future work on this project
would include improving the efficiency of our methods and
making them applicable for a wider variety of test cases.

Link to requirements.csv file: here

REFERENCES

[1] J. Borenstein and L. Feng, “Gyrodometry: a new method for combining
data from gyros and odometry in mobile robots,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 1, pp. 423–
428 vol.1, 1996.

[2] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

https://docs.google.com/spreadsheets/d/1PhgI011TOKErmcYeBcXZqQ4oxRp-whhzZwwE4zNV-qk/edit?usp=sharing

APPENDIX

A. Problem Statement

In an open-loop control system, a robot or a plant
operates without any real-time update of the motion of
the plant. Since there is no form of feedback, the robot is
unable to correct for disturbances, miscalibrations, errors
introduced by discretization and various nonlinearities.
There can be several uncertainties and disturbances in a
real-world application that can cause errors in the opera-
tion, even when the logic might be correct. These make
open-loop control impractical to operate anything other
than simple applications or projects.That said, open-loop
control has been used in some incredible applications: the
Space Shuttle’s launch trajectory was an open-loop con-
troller: nonlinearities introduced by atmospheric drag made
closed-loop control mathematically and computationally
challenging with the technology available at the time. The
main flaw of this type of control is that there is no update
in the algorithm if there are errors in the motion of the
robot.

When we use some kind of feedback to understand
how well the robot is doing in its environment, it’s called
a closed-loop control system. A closed-loop controller
can take corrective action if the plant’s actual output
deviates from its setpoint. This makes the objectives more
achievable by taking into account the systematic errors and
feedback from the sensors.

In our experiments, we have compared the performance
of the two control systems. The task aimed to maintain
a constant velocity while traversing a square trajectory.
We have shown the results of these experiments in the
following section. Furthermore, we have used closed-loop
controllers for position control to preemptively change
velocity as the target pose is reached.

B. Motor Calibration

The following relationship is used

pcmd = f−1(vdes) =

0 if vdes = 0

m1vdes + c1 if vdes > 0

m2vdes + c2 if vdes < 0

(19)

where m1,m2, c1, c2 are parameters we calibrated by
least-squares fitting. These parameters were saved into
user-specific config files. Since these four parameters were
needed for each wheel, each user had unique 8 param-
eters. The PWM commands were also saturated to lie
between −1 and 1. The calibration was performed for
both left and right motors. The positive and negative slope
values were found to be very similar to each other.

While a better fit would be possible using quadratics
or higher order polynomials, with the range of uncertainty
and other errors, we felt that the additional complexity
would not significantly improve performance.

Fig. 12. Data points and respective curve fits for each of our robots. Devansh’s
(left), Shreya’s (middle) and Anirudh’s (right).

C. PID Control

The proportional controller gives the robot the kick it
needs to approach the setpoint, and its extent is controlled
using coefficient kp. The integral controller is highly
effective in reducing steady-state errors that often occur
during PID operation. The differential controller helps
avoid transients in the error signal, thereby reducing the
oscillations.

Fig. 13. Block diagram of PID controller implemented.

D. Mapping

In our experiments, we have followed the standard flow
of building a preliminary map of the surroundings and

subsequent cycles of localizing within the map and updat-
ing the map. These steps lead us to an estimation of the
MBOT’s surroundings and its location based on LIDAR
scans using SLAM. To convey how certain we are about
the occupancy of a cell, we denote the probability that
a cell is occupied by p(occ(x, y)) ∈ [0, 1] and probability
that a cell is free by p(¬ occ(x, y)) ∈ [0, 1]. The occupancy
of a cell can be expressed as:

o(occ(i, j)) =
p(occ(i, j))

p(¬ occ(i, j))
∈ [0,∞] (20)

These probability values can at times become really
small and border on the precision of the system. To avoid
this problem, we consider the logarithm of this value that
also simplifies potential multiplicative operations. This for-
mulation can be expressed as log o(occ(i, j)) ∈ [−∞,∞].
To build a map of the surroundings, we construct an
occupancy grid in which each cell represents the log-odds
of that cell being occupied. Each scan provides crucial data
about the distance traversed by each emitted ray. We look
how far each ray has travelled and compute its end point
in world frame with the knowledge of its originating point
and range. This gives us the input required to compute the
cells through which the ray has passed in our occupancy
grid. We have used Breshenham’s algorithm [2] for this
purpose. This algorithm’s popularity can be attributed to
the fact that it requires only integer arithmetic operations.
Breshenham’s algorithm [2] gives us information about
which cells the ray might have passed through. As the ray
travels from its origin to its end point (where an obstacle
may be located), we consider each of the cells in between
to be free and we update their log-odds accordingly.
Finally, we update the log-odds of the cell in which the
obstacle is supposedly located.

Algorithm 2: Occupancy Grid Mapping Algorithm.
Input: Current occupancy grid map (map)
Input: LIDAR scan (scan)
if map not initialized then

previousPose = pose
end
create a moving LIDAR scan
adjscan ← (scan, previouspose, pose, 1)
for ray in adjscan do

if end is obstacle = False then
Use Breshanham’s Algorithm to find cells

along ray and insert them as free
else

increase log- odds to insert last point as hit
end

end
previousPose = pose

E. Resampling the Distribution

The following algorithm was used to resample the
posterior distribution

Algorithm 3: Resampling Posterior Distribution
Input: posterior_
Input: sampleWeight
vector prior = posterior
for p in prior do

p = posterior + rand normal dist(µ = 0, σ = 0.04)
parent pose = posterior
weight = sampleWeight

end
return prior

	Introduction
	Motion and Odometry
	Characterizing the Wheel Speed
	Implementing the Open-Loop and Closed-Loop Control
	Odometry
	Gyro Sensor Fusion
	Robot Frame Velocity Controller
	Motion Controller

	SLAM Implementation
	Mapping and Occupancy Grid
	Monte-Carlo Localization – Action Model
	Monte-Carlo Localization – Sensor Model and Particle Filters
	Simultaneous Localization and Mapping (SLAM)

	Planning and Exploration
	A-star Path Planning
	Map Exploration
	Map Exploration with Unknown Starting Pose

	Conclusion
	References
	Appendix
	Problem Statement
	Motor Calibration
	PID Control
	Mapping
	Resampling the Distribution

