
1

ROB 550 ArmLab Report Team 5 (Afternoon)
Anirudh Aatresh, Christopher Nesler, Joshua Roney

{aaatresh, neslerc, jproney}@umich.edu

Abstract—With good dexterity and vision, a robotic
manipulator can undertake a variety of repetitive tasks
such as sorting and stacking with considerable accuracy. In
this report, we study algorithms based on computer vision
and kinematics that can make these feats a reality. These
algorithms include functionality to create and execute
teach-and-repeat trajectories, perform forward kinematic
and inverse kinematic pose generation, detect blocks and
block colors, and autonomously sort and stack large and
small blocks. We analyze the performance of our imple-
mentations through data collected during experiments and
suggest further improvements for future work.

I. INTRODUCTION

Multiple degree-of-freedom manipulator arms are a
form of robots that are very widely used in industrial
and academic settings, alike. In this paper we present
our work with the RX200 arm, in which we execute
teach-and-repeat behavior, and use color- and LIDAR-
based imaging to implement block detection and several
automated sorting and stacking tasks.

II. METHODOLOGY

A. Camera Calibration

The camera model consists of internal and external pa-
rameters, and the process of estimating these parameters
is known as camera calibration. The former consists of
parameters such as the focal length f , optical axis offsets
x0 and y0, axis skew s, lens distortion, etc., which are
collectively described by the intrinsic matrix K. Cameras
are used in various applications and are mounted in a
variety of ways. The extrinsic matrix must be designed
to describe application-specific external parameters.

1) Intrinsic matrix calibration: A factory-calibrated
version of the intrinsic matrix is stored in the camera
and can be extracted using a checkerboard calibration
procedure. Following the procedure depicted in [1] and
[2], we performed four trials of intrinsic matrix calibra-
tion and compared their average to the factory calibration
intrinsic matrix in III-A1.

2) Extrinsic matrix calibration: Using the physical
dimensions of the workspace, we performed a manual
calculation to determine a rough extrinsic matrix, which
was a transformation between the camera and workspace
reference frames. For this transformation, we determined
the translational component by measuring the distance

between the origins of the workspace and camera frames.
The rotation matrix was obtained by considering an
inversion in the Y and Z axes of the camera frame
with respect to the workspace frame. Furthermore, this
extrinsic matrix coupled with the intrinsic matrix can
be used to find a transformation between pixel [u, v]
coordinates and workspace [xw, yw, zw] coordinates with
depth d through the relations:
xc

yc

zc

1

 = zcK
−1

uv
1

 ;

xw

yw

zw

1

 = H−1

xc

yc

0

1

+

0

0

976− d

0

(1)

where, K is the intrinsic matrix, H is the extrinsic matrix
and [xc, yc, zc] refers to a point in the camera frame.
Depth d at pixel coordinates [u, v] is obtained from the
depth image captured by the LIDAR sensor.

To keep the calibration procedure simple, yet accurate,
we implemented a semi-automated click to calibrate
procedure. We clicked the centers of four AprilTags
[3] and two other points using the mouse pointer and
recorded their pixel coordinates (2D coordinates). Using
their established 3D workspace coordinates, we found
the extrinsic matrix for this camera configuration using
a perspective N-point solver. Using the solvePnP
method from the OpenCV library, we input these 3D
- 2D point pairs along with the camera’s intrinsic matrix
and distortion coefficients, which were obtained during
the calibration procedure mentioned in section II-A1.

The resulting extrinsic matrix was then put into eq.
(1) to convert between workspace, camera and pixel
coordinates. Although our X−Y coordinates were fairly
accurately determined using the inverse of the extrinsic
matrix, we found that the zw coordinate was off by about
50 mm. To fix this deviation, we instead performed depth
calibration using the formula: zw = 976− d.

B. Block Detection

To find blocks within the workspace, we masked
off areas in the image which we would not consider
viable for block detection. Three rectangular regions
were defined in the image in which blocks may be found.
These rectangles include the portion of the workspace to
the left of, above, and to the right of the robot (as seen
from view in Fig. 1). This eliminates the portion of the

2

image beyond the workspace surface, as well as most of
the RX200 in its sleep pose (see Fig. 1). The image was
also filtered to exclude any pixels corresponding to depth
measurements over 960 mm. This prevents the majority
of the workspace surface from being considered by the
algorithm, reducing false positive contours.

After the masks were applied, the FindContours
OpenCV method was used to detect contours in the depth
image. We screened each of the detected contours for
eligibility as blocks using the following criteria. First, if
a contour was less than 200 pixels (or greater than 5000)
in area, it was deemed too small (or large) to be a block.
Second, a bounding rectangle of minimum area was fit
around each contour using the minAreaRect OpenCV
method. If the ratio of this bounding rectangle’s width
and height was less than 0.5 or greater than 2.0, the
contour was eliminated for not being sufficiently square.
The remaining contours were considered blocks and each
contour’s centroid was stored for use as a destination
pose via inverse kinematics. The orientation of each
block, also used by the inverse kinematic trajectory plan-
ner, was found by converting the orientation provided by
OpenCV’s minAreaRect method to radians.

The contours detected in the depth image were then
used to identify the corresponding pixels in the RGB
image. We converted the RGB data for all pixels in
each contour to HSV. Then we took the mean hue of
each contour and checked whether it fell within any of
a set of ranges we assigned to each potential color (red,
orange, yellow, green, blue, violet). We tuned the color
hue ranges by manually obtaining the color on the top
surface of a block of each color from our workstation’s
live output image. This accounted for the true setup of
our workspace (i.e. influence from our camera, lighting,
etc.).

A modified version of this procedure was implemented
for cases in which destacking of blocks may be nec-
essary, such as the competition tasks. In this modified
procedure, before searching for blocks as described
above, contours were found and evaluated at several
“slices”, each corresponding to a thin range of depth
values. Each slice was centered about the expected depth
of a particular stack (i.e., two, three, or four small blocks
only or large blocks only). This eliminates the issue
presented by the side wall of a stack being included
in a detected contour, making it insufficiently square to
be considered a block by the above method. Then, if
contours were found in a slice, and they met the other
criteria above, they would be considered blocks located
at the X − Y coordinates of their centroid, and the Z-
coordinate of the corresponding slice.

To evaluate the performance of our (unstacked) block
detection, large blocks were placed on the workspace
table in four rows of six at known locations and ori-

Fig. 1. Array of large blocks used for block detection algorithm
accuracy. Centroids (white) and contour bounding boxes (blue) su-
perimposed on RGB image of workspace.

entations, as seen in Fig. 1. Each row (located at Y
= 325, 175, 25, and -125 mm) had blocks placed at
X = -400, -250, -100, 100, 250, and 400 mm. Each
row contained one block of each of the aforementioned
colors, with their position shifting two spots to the left in
each subsequent (descending row) to evaluate different
colors in different portions of the workspace. Finally, the
blocks were placed with orientations alternating between
0 and π/4 rad, except where prevented by workspace
geometry. The X−Y −Z centroid coordinates, computed
orientation, contour size in pixels, and detected color
were recorded and evaluated for accuracy. We generated
a heatmap of the centroids’ positional errors as measured
by the two-norm of the X, Y, and Z errors. True block
height was assumed to be 38 mm for the purpose of this
calculation.

C. Teach and Repeat

We modified the user interface to include several
buttons that enable the operator to teach the RX200 a
desired trajectory and have it replicate that behavior. A
“Start Teach” button initializes an array for storing joint
states and disables torque on the arm, allowing the op-
erator to freely maneuver it into a desired configuration.
Two buttons labeled “Pose Grip: Open” and “Pose Grip:
Closed” allow the user to indicate which state the end-
effector should be in at the next recorded pose. The
“Record Pose” button adds the current joint angles to
the array of poses, along with the desired gripper state.
Once all desired poses have been recorded, the “End
Teach” button stores the array of robot configurations in
a file labeled ‘Poses.csv’. These poses, or any manually-
entered list of poses stored in a file of this name, can be
loaded by pressing the “Recital” button, and executed us-
ing the already-present “Execute” button. The “Execute”
state in the state machine iterates through a list of given
waypoints, and uses the set_positions method of
the RXArm class to move the arm to a given waypoint
from its current joint state with a default time of 2
seconds. In cases where only initial and final waypoints

3

are given, we create intermediate waypoints in between
them to make the entire motion smoothly follow the
desired trajectory.

We evaluated the performance of the teach-and-repeat
feature by training the arm to swap the positions of
two blocks, located at (-100, 225) and (100, 225) on
the workspace surface. We used an intermediate holding
location of (250,75) to temporarily store one block while
the other was manipulated. This process was repeated as
many times as possible before error accumulation led to
a failure to successfully pick and place the blocks.

This implemented teach-and-repeat function was used
for tuning the RX200 arm’s PID parameters. To avoid
overworking the motors we elected to use an I gain of
0 for all motors. We adjusted the P gains of motors
until they were enough to reach the target angles and
started to oscillate around them. The D gains were then
increased until the oscillation ceased and there was no
more overshooting.

D. Forward Kinematics

We used the Product of Exponentials method (PoX)
for forward kinematics on the RX200 arm. This method
takes in the angle for each joint on the robot and cal-
culates the resulting position and orientation of the end-
effector. First, we identify the reference configuration of
the robot, in which each joint has a value of 0 rad (see
Fig. 2). We then form a 4x4 transformation matrix, as in
eq. (2), that represents the end-effector position as a 3x1
vector, p, and orientation relative to the base frame of the
robot as a 3x3 matrix, R. In this reference configuration
the end-effector orientation is aligned with the world
axes so the rotation portion of the transformation matrix
is an identity matrix and the translation portion is where
it is located in world coordinates.

gst0 =

[
R p

0 1

]
=

1 0 0 −4.5

0 1 0 429.15

0 0 1 301.91

0 0 0 1

 (2)

Next we form a 6-dimensional vector, known as a
twist ξ, to represent each joint. The twist is found by
identifying the unit axis of rotation of joint i, ωi, and
an associated point on that axis, qi. The top half of the
twist, vi, is the cross product of the negative rotation axis
and the point, −ωi × qi, and the bottom half is the axis
of rotation for that joint (eq. (3)). The twists calculated
for each joint in the reference configuration (Fig. 2) are
listed in eq. (4) - (8).

ξi =

[
−ωi × qi

ωi

]
(3)

ξ1 =
[
0 0 0 0 0 1

]T
(4)

Fig. 2. Schematic of RX200 arm annotated with points, robot frame
coordinate system, and screw vectors. Schematic from [4].

ξ2 =
[
0 −103.91 0 −1 0 0

]T
(5)

ξ3 =
[
0 303.91 −50 1 0 0

]T
(6)

ξ4 =
[
0 303.91 −250 1 0 0

]T
(7)

ξ5 =
[
−303.91 0 0 0 1 0

]T
(8)

Each twist then has its matrix exponential calculated
using eq. (9) obtained from equation 2.36 in Murray, Li,
Sastry (MLS). [5].

eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω × v) + ωωT vθ

0 1

]
(9)

In which ω is the axis of rotation for the joint, v is the
top half of the twist, the variable I is the 3x3 identity
matrix, θ is the angle of the joint, and eω̂θ is the rotation
matrix of the joint. The rotation matrix eω̂θ is found
using Rodrigues’ Formula (eq. (10)) which is found as
equation 2.14 in MLS [5].

eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ) (10)

In which I is the 3x3 identity matrix, θ is the joint
angle, and ω̂ is the skew-symmetric matrix of the joint’s
rotation axis ω (eq. (11)).

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (11)

Once the joints’ twist exponential matrices are cal-
culated they can the be multiplied, in joint order, with
the reference configuration matrix to calculate the end-
effector’s new pose in a 4x4 matrix gstθ (eq. (12))

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5gst0 = gstθ (12)

We represent the orientation as an XYZ Euler angle ro-
tation, also referred to as Roll-Pitch-Yaw. This represen-
tation breaks a rotation matrix down into 3 consecutive
rotations about the world X-axis, Y-axis, and Z-axis by
angle values of ψ, θ, and ϕ, respectively. The values

4

of these angles are solved for by comparing the given
rotation matrix against the XYZ Euler Angle rotation
matrix (eq. (13)) in which cθ is short for cos θ and sθ
is short for sin θ. The resulting output of the forward
kinematics is a 6-dimensional pose vector containing the
X−Y −Z coordinates and the XYZ Euler angles of the
end-effector in the world frame (eq. (14)). This vector’s
contents were displayed in the GUI to show the end-
effector’s current pose.cθcϕ −cψsϕ+ sψsθcϕ sψsϕ+ cψsθcϕ

cθsϕ cψcϕ+ sψsθsϕ −sψcϕ+ cψsθsϕ

−sθ sψcθ cψcθ

 (13)

pose =
[
xw yw zw ψ θ ϕ

]T
(14)

E. Inverse Kinematics

The arm’s inverse kinematics were solved using PoX,
similar to forward kinematics, and the Paden-Kahan (PK)
subproblems obtained from [5]. The following equations
are implemented in the ‘kinematics.py’ file of the code
and will be referenced by line. The inverse kinematics
function ′IK pox′ begins at line 170 by taking a desired
pose vector of the form shown in eq. (14) and converts
it into a 4x4 transformation matrix using the function
′pose to T ′ located at line 426. The function calcu-
lates rotation matrices of the given Euler angles using
the ′scipy.linalg.expm′ function and multiplies them
together to form an XYZ Euler Angle matrix (eq. (15)).
The coordinates of the pose are used to form the first 3
rows of the 4th column, p. A row of zeros and a one are
added to complete the 4x4 homogeneous transformation
matrix known as gd or gstθ, following the form in eq.
(2).

Rtot = Rz(ϕ)Ry(θ)Rx(ψ) (15)

When gd is formed from the desired pose, the PoX
equation is manipulated to begin solving for the values
of θ. It starts by multiplying both sides of eq. (12) by
the inverse of the reference configuration matrix gst0 to
single out the joint transformation matrices and results
in a new matrix g1 seen in line 193 of the code (eq.
(16)).

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5 = gstθg
−1
st 0 = g1 (16)

The value of joint angle θ1 can be solved for using
geometry (lines 200-201 of the code) since the waist
joint is the only joint that controls what angle the entire
arm faces on the x-y plane. The arctan2 difference
between the target X − Y coordinates (xd, yd) and the
reference X−Y coordinates (xo, yo) is found and returns
the value of θ1 needed to rotate the arm to face the target
coordinate (eq. (17)). This value is clamped between 2π
and −2π to ensure it provides a realistic rotation. Lastly,
the twist exponential transformation matrix of joint 1

as well as its inverse are calculated using this found
value for θ1 using eq. (9). Both sides of eq. (16) were
multiplied by the inverse matrix to achieve a new matrix
g2 in lines 207-209 of the code (eq. (18)).

θ1 = arctan 2(yd, xd)− arctan 2(yo, xo) (17)

eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5 = (eξ̂1θ1)−1g1 = g2 (18)

By multiplying both sides of eq. (18) by a known point
that rests on both the rotation axes of joints 4 and 5 p4,
the transformation matrices for joints 4 and 5 can be
removed since a transformation matrix multiplied by a
point on the rotation axis will equal the same point (eq.
(19)). Then by subtracting both sides by a point on joint
2’s rotation axis (eq. (20)), the setup for PK subproblem
3 is complete and 2 possible values for θ3 can be solved
for.
eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5p4 = eξ̂2θ2eξ̂3θ3p4 = g2p4 (19)

eξ̂2θ2 ||eξ̂3θ3p4 − p2|| = ||g2p4 − p2|| (20)

The PK subproblem 3 (implemented in the function
′PK3′ at line 306 of the code) involves rotating about
a single axis to a given distance. The distance (δ) is
calculated as the squared norm of vector g2p4 − p2.
The solution to this subproblem is obtained from MLS
pg. 102-103 [5]. The goal of this subproblem involves
rotating the point p4 around axis 3 until it is the distance
δ away from point p2. Up to two solutions exist for the
value of θ so a logic statement was added at line 229 to
choose the smaller value of the valid values to maintain
an elbow-up position. With the value of θ3 chosen, the
corresponding transformation matrix for joint 3 can be
calculated along with its inverse (lines 238-240 of the
code). Returning to eq. (19), the value of eξ̂3θ3p4 can be
calculated to a point p′4 and the result is the setup for
PK subproblem 1 (eq. (21)).

eξ̂2θ2p′4 = g2p4 (21)

The PK subproblem 1 involves rotating a point about an
axis until it reaches another given point and is imple-
mented at line 398 of the code. In this case, point p′4 is
being rotated about joint 2 until it reaches point g2p4.
The solution to this subproblem was obtained from MLS
pg. 99-100 [5]. The solution yields only one possible
solution. Similar to joints 1 and 3, the transformation
matrix of joint 2 and its inverse are calculated at lines
256-257. The inverse of the first 3 joints’ transformation
matrices are multiplied to both sides of eq. (16) at line
261 to single out the final joint angles to calculate, θ4
and θ5 and results in a new matrix g3 (eq. (22)).
eξ̂4θ4eξ̂5θ5 = (eξ̂3θ3)−1(eξ̂2θ2)−1(eξ̂1θ1)−1g1 = g3

(22)
Multiplying both side of eq. (22) by a point on joint
axis 5 and not joint axis 4 (p5) will single out joint 4’s
matrix and result in another setup for PK subproblem

5

1 which will yield one solution for θ4 (eq. (23)). The
transformation matrix for joint 4 and its inverse are
calculated and the inverse is multiplied with g3 to
produce a new matrix g4 (eq. (24)). Lastly, θ5 can be
solved with PK subproblem 1 by multiplying both sides
of eq. (24) with any point not on joint 5’s rotation axis,
we used origin of the world frame p0 (eq. (25)).

eξ̂4θ4eξ̂5θ5p5 = eξ̂4θ4p5 = g3p5 (23)

eξ̂5θ5 = (eξ̂4θ4)−1g3 = g4 (24)

eξ̂5θ5p0 = g4p0 (25)

The resulting joint angles are returned as a 5-dimensional
vector. Error catching was added to the function in the
event that a joint angle could not be calculated due to
the desired pose being outside of the robot’s reachable
workspace. If any joint angle value is calculated as a
NaN , the angle is unachievable and the function exits
and returns a None while printing which joint angle
could not be solved.

F. Click To Grab

A click-to-grab feature was implemented to allow
a user to click a position displayed on the GUI and
command the robot to grab the object at that location
then return to its origin pose. The user would then click
another location on the GUI to command the robot to
place the object there then return to its origin pose.
Each click would retrieve the pixel coordinates of that
location and convert it to world coordinates using eq.
(1). The given world coordinates and a prior location
set slightly above the given location were run through
the inverse kinematics described in section II-E for joint
angle positions to achieve. These joint angles were sent
through the set_positions method of the RXArm
class as waypoints to plan the trajectory.

G. Task Automation

1) Event 1: Pick ’n Sort: For this event, we use
the block detection system described in section II-B
to find the locations of all the blocks lying within the
positive-Y half plane (valid workspace). This entire pick
and sort sequence is repeated indefinitely until no more
blocks exist in the valid workspace. At the start of every
pick and sort sequence, a snapshot of the workspace
is taken and processed using our block detector frame-
work. This system also returns the area of each contour
associated with a specific block and we use this data
to classify blocks as large or small based on an area
threshold (1000). Moreover, using the orientation data
from minAreaRect method, the end-effector of the
arm is oriented correctly to permit more robust grasping
when coming in from the top. To increase the size of

the workspace, we used a horizontal grasp algorithm to
come in from the side when attempting to grasp a block.

Once all blocks were detected, the centroid of each
block contour was used as input to the inverse kinematics
to determine a valid joint configuration. The arm was
made to pick up the block and move to an intermediate
pose before commencing the drop sequence. It then
drops the block in the fourth quadrant of the workspace
if the block was classified as large and in the third
quadrant if small. The drop location was updated after
each drop to prevent the arm from trying to place a
block at a location where a previously placed block
already exists. After an attempt has been made to pick
and sort each block in the captured snapshot, the entire
sequence is repeated until no more blocks are found in
the subsequent snapshot.

2) Event 2: Pick ’n Stack: We adopt a similar strategy
to pick up blocks as the first event (section II-G1).
However, the block placement is done such that the small
and large blocks are placed on separate stacks in the
third quadrant of the workspace. When performing the
dropping sequence, the height at which each block was
dropped was incremented after each drop and the drop
height was reduced from that of event 1 (section II-G1)
to be more gentle while stacking.

3) Event 3: Line ’em Up: We used the color detection
component of the block detector (section II-B) to deter-
mine the color of each block. Once the blocks’ colors
were determined, we sorted each block based on their
color following the ROYGBV precedence, where Red
was given rank 1 and Violet was given rank 6. The
quicksort [6] algorithm was used to sort this list, which
was then mapped to a predefined list of color-specific
locations. This list was then iterated through, leading
to each block being placed in a line in their respective
locations. By using a predefined location list for each
color, we made sure that sufficient space was left (in
the ROYGBV order) for blocks that were missed in the
first snapshot and captured in subsequent iterations. The
location list was created such that two parallel lines were
created, one for each size in the third quadrant.

A destacking algorithm was implemented to deal with
cases when blocks were stacked in the workspace. In our
implementation of this algorithm, blocks were removed
from the stack and placed in the fourth quadrant in a
grid. Once all stacks were destacked, blocks were then
lined up in order in the third quadrant.

4) Event 4: Stack ’em High: The color sorting algo-
rithm used in section II-G3 was adopted here as well.
However, we iterate through the sorted list to create
separate color sorted (in ROYGBV order) stacks in
the third quadrant. The dropping sequence used here is
similar to that used in event 2 (section II-G2).

6

III. RESULTS

A. Camera Calibration

1) Intrinsic matrix calibration: The average intrinsic
matrix obtained by performing four trials of the checker-
board calibration procedure can be seen as Kavg in eq.
(26) along with the distortion coefficients in eq. (27).

Kavg =

954.6327 0.0000 629.4831

0.0000 968.4867 386.4730

0.0000 0.0000 1.0000

(26)

dist. coeffs = [0.1505,−0.2453, 0.0002,−0.0014]
(27)

The standard deviation across the four trials of each
element of the intrinsic matrix was calculated and can be
found in the appendix (VI). There is a slight deviation in
values of parameters pertaining to the focal length and
x0 offset. The most deviation was observed in the y0
offset value. Some of the sources of error in the intrinsic
matrix calibration procedure are variations in lighting,
the straightness of lines on the checkerboard and the
care taken to complete the entire calibration procedure.

The factory calibration intrinsic matrix can be seen as
Kfactory in eq. (28)

Kfactory =

904.3176 0.0000 644.0140

0.0000 904.8245 360.7775

0.0000 0.0000 1.0000

 (28)

These two matrices (Kavg and Kfactory) differ signif-
icantly, especially in fx and fy terms. We trust the
intrinsic matrix obtained through our calibration pro-
cedure as it depicts the transformation matrix obtained
from the most recent operation of the camera compared
to the factory calibration matrix which would have
been recorded during manufacture. The newly obtained
calibration matrix would take into consideration any
imperfections that occur due to deterioration through use.

2) Extrinsic matrix calibration: This nominal extrin-
sic matrix can be found in eq. (29).

Hnominal =

1 0 0 −14.1429

0 −1 0 194.4616

0 0 −1 978

0 0 0 1

 (29)

The extrinsic matrix obtained by the click to calibrate
procedure can be found as Hcal in eq. (30).

Hcal =

0.9999 0.0070 −0.0043 48.9035

0.0068 −0.9989 −0.0450 180.2612

−0.0046 0.0449 −0.9989 1020.4982

0.0000 0.0000 0.0000 1.0000

(30)

The nominal and calibrated extrinsic matrices differ
in values, especially in their translational components.
Their rotation matrices however are more similar. The
absolute difference between these two matrices can be
found in the appendix (VI). The sources of error between
these two matrices can be deviations in measurement
of 3D points in the workspace and the fact that the
camera might have moved or been disturbed between
experiments. This would mean that the matrix obtained
through a calibration procedure would be more accurate
than the nominal extrinsic matrix.

In order to verify the accuracy of our calibration
procedure, we compared the workspace coordinates ob-
tained through the application of eq. (1) with that of
a tape measure. The errors in X − Y coordinates are
given in Table I after applying a correction formula
(eqs. (31), (32), (33)) that compensates for errors. The
values obtained before compensation can be seen in
the appendix (VI). The error in Z is the error in
depth measurement by the LIDAR, which was found
to be 2.25mm. These errors lie within 10mm and were
considered within tolerable limits for future experiments.

TABLE I
ℓ2 NORM (IN mm) OF ERROR IN WORKSPACE X − Y COORDINATES

WHEN THE NUMBER OF BLOCKS ON THAT COORDINATE ARE
VARIED.

Blocks (0 , 175) (-300 , -75) (300 , -75) (-300 , 325)
0 3.16 1.41 4.47 1.00
1 5.00 7.28 5.38 1.41
2 5.83 8.06 7.28 3.60

x′w =

{
1.0526xw if xw < 0

1.0638xw + 2.15 if xw ≥ 0
(31)

y′w =

{
1.0526yw − 9.21 if yw < 175

1.0922xw − 14.4444 if xw ≥ 175
(32)

z′w = 976− d (33)

B. Block Detection

The color detection algorithm correctly identified
91.67% of all blocks in the test array. Two violet blocks
were misidentified as having a color of “none”, meaning
their centroid’s mean hue did not fall within the defined
violet color range. The root mean square error (RMSE)
and standard deviation for the X, Y, Z, and θ components
of the centroid pose are reported in Table II.

C. Teach and Repeat

The RX200 arm successfully completed four cycles of
swapping the two blocks’ locations via an intermediate
pose using the trajectory we taught it. The individual
joint angles for one complete swapping cycle are shown

7

TABLE II
ROOT MEAN SQUARE ERROR AND STANDARD DEVIATION FOR

CENTROID COORDINATES AND BLOCK ORIENTATION AS ESTIMATED
BY BLOCK DETECTION ALGORITHM.

RMSE Std. Dev.
X (mm) 5.6778 4.7860
Y (mm) 5.5783 5.4004
Z (mm) 2.8431 2.4672
θ (rad) 0.0272 0.0278

Fig. 3. Heatmap for ℓ2 norm of XYZ centroid error (mm) on array
of large blocks. Data from setup in Fig. 1.

in 4. When used as the input for our forward kinematic
model, these joint trajectories generate the positional
trajectory of the end-effector when it executes the block
swap task (Fig. 5 in the appendix (VI)).

The final PID parameter values used for competition
are listed in Table III.

D. Forward Kinematics

The forward kinematics functions developed were in-
tegrated into the display of the GUI used when operating
the robot. The functions were fed the joint angle values
as provided by the encoders of the joints’ motors and the
resulting coordinates and XYZ Euler angles of the end-
effector were displayed. The accuracy of tracking our
position using the encoders was assessed by comparing
the outputs of the kinematics equations to known coor-
dinates and orientations. The first test was performed by
positioning the tip of the gripper at 4 known coordinates

TABLE III
FINAL PID PARAMETERS USED FOR EACH JOINT

P I D
Waist 800 0 6400
Shoulder 1800 0 1000
Elbow 1500 0 3000
Wrist Angle 800 0 2400
Wrist Rotate 640 0 3600

Fig. 4. Plot of angular position (rad) for RX200 base (joint 1),
shoulder (joint 2), elbow (joint 3), and wrist (joints 4 and 5) across
one teach-and-repeat block swap cycle.

atop 2 large blocks, measured to be 75 mm high, and
angled −π/2 rad about the X-axis and −π/4 rad about
the Z-axis. The expected results would have matching
coordinates and orientations with the position the robot
was held in with a Z value slightly higher than 75 mm
since the chosen end-effector point was slightly inward
(about 10 mm) from the tip of the gripper. The results
are shown in Table IV.

TABLE IV
FORWARD KINEMATICS RESULTS FROM PLACING THE TIP OF THE

GRIPPER ATOP 2 LARGE BLOCKS ROTATED −π/2 rad ABOUT THE X
AXIS AND −π/4 rad ABOUT THE Z AXIS

(-300,-75) (300,-75) (150,275) (-150,275)
X (mm) -300.00 301.00 156.00 -144.00
Y (mm) -69.00 -76.00 272.00 280.00
Z (mm) 85.00 83.00 79.00 84.00
Roll (rad) -1.57 -1.57 -1.57 -1.57
Pitch (rad) 0.02 0.02 0.01 0.02
Yaw (rad) -0.78 -0.78 -0.86 -0.80

The second test for the forward kinematics positioned
the gripper against the board rather than atop 2 large
blocks. The angle of the gripper was changed to have
a −pi/2 rad rotation about the X and Z axes. 2 known
points were selected to test and the gripper was posi-
tioned on the chosen points. The desired results would
have matching X −Y coordinates and orientations with
a Z coordinate slightly higher than 0. The results are
shown in Table V.

Table VI lists the Root Mean Squared Errors (RMSE)
and standard deviations of the coordinates and ori-
entation estimates from forward kinematics from the
aforementioned tests. As seen in Tables IV and V, errors
in the estimate increase the further out the robot stretches
from the base and lead to higher errors in the coordinates
but accurate orientation estimates.

8

TABLE V
FORWARD KINEMATICS RESULTS FROM PLACING THE TIP OF THE
GRIPPER AGAINST THE BOARD ROTATED −π/2 rad ABOUT THE X

AND Z AXES

(0,175) (0,375)
X (mm) 5.67 16.00
Y (mm) 180.00 377.00
Z (mm) 5.00 2.00
Roll (rad) -1.57 -1.57
Pitch (rad) 0.02 0.02
Yaw (rad) -1.488 -1.47

TABLE VI
ROOT MEAN SQUARE ERROR AND STANDARD DEVIATION FOR POSE

ESTIMATE FROM FORWARD KINEMATICS.

RMSE Std. Dev.
X (mm) 7.7583 5.6712
Y (mm) 4.0825 3.6697
Z (mm) 4.6547 3.1411
Roll (rad) 0.0008 0.0000
Pitch (rad) 0.0187 0.0041
Yaw (rad) 0.0617 0.0648

E. Task Automation

1) Event 1: Pick ’n Sort: In our implementation of
Pick ’n Sort, we successfully completed level 2 - our
robot arm was able to sort 6 blocks randomly placed
across the valid workspace into a pile of large and small
blocks in the fourth and third quadrants respectively. The
destacking algorithm mentioned in section II-B was used
here, and the topmost block was directly placed into
its respective quadrant. However, we exceeded the time
limit in each run with this implementation. Our incorpo-
ration of faster movement times between waypoints was
ready, but we did not test this due to a lack of time. We
received a score of 210/300 for this task.

2) Event 2: Pick ’n Stack: Our algorithm to solve this
task was capable of stacking 5 of 6 blocks in the level
2 configuration of this event and obtained a score of
150/300. The main issue that we were running into was
imprecise gripping actions that led to an unstable stack
of blocks being formed. As more blocks were added,
it became less stable and collapsed. However, unlike
event 1, we were unable to incorporate the destacking
algorithm here to deal with stacks in the workspace.

3) Event 3: Line ’em Up: In this event, we could
achieve a successful placement of blocks in the right
order for all except three blocks, a large green block
in the first quadrant and a stack of red and blue small
blocks in the second quadrant. The main issue that we
faced with the green block was that we were unable to
reliably reach the block at its distance. For the stack
of small blocks, we encountered an issue of picking up
both blocks and, after setting them down (destacking),
detecting a single large contour and considering them to
be a large violet block (as our color detection algorithm

averages the contour’s colors – red and blue). However,
we managed to correct these issues by implementing
a stretched grasp algorithm, where the X − Y of the
intermediate pose before grasping is reduced by a factor
(0.9), but the grasping poses’ X − Y is increased by
a factor of 1.05. We also increased the grasping pose’s
Z to prevent grasping multiple small blocks. We were
unable to evaluate this in competition due to a lack of
time and received a score of 300/400.

4) Event 4: Stack ’em High: In this event, we faced
a similar issue as event 2 in section III-E2, wherein
our algorithm was unable to successfully stack blocks
beyond a certain height. We noticed that our wrist joint
motor was outdated with a weaker model and defective
by struggling to rotate past a specific angle. This was an
additional limitation causing issues when trying to stack
more than 4 blocks. These issues made stacking blocks in
a certain order harder as a collapsed stack would confuse
our algorithm and break the order in which the blocks
were to be stacked. We received no points for this task.

IV. DISCUSSION

Our camera calibration procedure was semi-
automated, and could potentially be affected by
imprecise clicks. This could be fixed with an automatic
calibration system that uses the AprilTags’ [3] data to
find the extrinsic matrix. Furthermore, we could also
incorporate a distortion reduction procedure into the
calibration loop to reduce distortion errors by using
alternate calibration methods such as grid matching.

In task automation, our event 1 algorithm was able
to address the level 3 scenario, but was not fast enough
to do so within the time limit. An improvement here
would be to test our implementation of quick movement
between waypoints. The main issue we faced in event 2
could be alleviated by a more accurate grab and place
operation for precise placement of blocks onto a stack.

An improvement in event 4 would be to fix the
stacking algorithm (mentioned in section III-E2) and
implement the corrected stretched grasping algorithm
used in event 3 (section III-E3). Apart from these, fixing
the wrist joint motor and possibly using a more powerful
one would help perform much better in this event.

V. CONCLUSION

In this report, we have designed an autonomous sys-
tem that is capable of identifying blocks of interest and
performing manipulative operations on them. We have
detailed the mathematical basis behind our kinematic
algorithms and have analyzed the accuracy of our sys-
tem using data collected during experimentation. Our
implementation was successful in achieving the desired
solutions to some problems, and improvements have
been proposed for the shortcomings in our methods.

9

REFERENCES

[1] “Rob 550 armlab,” https://docs.google.com/document/d/
1Mi2uipPK5PiONEMRMiNAcIw yYsrcscGaCcnMEwnzPQ/edit,
wN 2022.

[2] “Camera calibration - ros wiki,” https://wiki.ros.org/camera
calibration/Tutorials/MonocularCalibration.

[3] E. Olson, “AprilTag: A robust and flexible visual fiducial system,”
in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). IEEE, May 2011, pp. 3400–3407.

[4] “Reactorx-200 desktop robot arm,” https://www.trossenrobotics.
com/reactorx-200-robot-arm.aspx.

[5] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994. [Online]. Available:
https://doi.org/10.1201/9781315136370

[6] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM,
vol. 4, no. 7, p. 321, jul 1961. [Online]. Available: https:
//doi.org/10.1145/366622.366644

[7] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling
and Control. Wiley, 2005. [Online]. Available: https://books.
google.com/books?id=wGapQAAACAAJ

[8] C. Cattaneo, G. Mainetti, and R. Sala, “The importance of camera
calibration and distortion correction to obtain measurements with
video surveillance systems,” in Journal of Physics: Conference
Series, vol. 658, no. 1. IOP Publishing, 2015, p. 012009.

VI. APPENDICES

A.

Standard deviation in the elements of the intrinsic
matrix obtained across four trials:

Kstd =

25.9690 0.0 19.4612

0.0 24.1282 105.8529

0 0 0.0

 (34)

B.

Absolute elementwise error between Hnominal and
Hcal:

Habs err =

0.00003 0.0070 0.0043 63.0464

0.0068 0.0010 0.0450 14.2003

0.0046 0.0449 0.0010 42.4982

0.0 0.0 0.0 0.0

(35)

C.

TABLE VII
ℓ2 NORM OF ERROR IN WORKSPACE X − Y COORDINATES WHEN

THE NUMBER OF BLOCKS ON THAT COORDINATE ARE VARIED
WHEN THE CORRECTION FORMULAS (31), (32) ARE NOT APPLIED

FOR COMPENSATION.

Blocks (0, 175) (-300, -75) (300, -75) (300, 325)
0 3.00 19.10 19.10 22.02
1 2.00 19.79 15.62 19.79
2 4.00 8.06 15.26 23.34
4 6.32 13.41 17.46 27.58
6 8.54 11.66 19.31 29.06

D.

Fig. 5. Plot of 3-dimensional position of end-effector during one cycle
of teach-and-repeat block swapping via intermediate position.

