
AE 567: Project 4 - The Coupling of Model Predictive Control with
Robust Kalman Filtering

Anirudh Aatresh1

Abstract— Building an approximate model that describes
certain phenomenon or systems is a common practice. Apart
from other characteristics, two models that describe a certain
system can differ on how accurate they are in doing so and
how much computation they require to do so. Ideally, we
would want to have a very accurate model that also requires
less computation to run. This model uncertainty can affect
controllers such as model predictive control (MPC) as they rely
on a model of the system to obtain a control input at every time
step. In this project, we look at how we can implement a more
robust state estimator for the MPC framework that takes into
account the fact that the model we are working with is only
an approximation of the system. We apply these controllers to
a tracking problem on a servo-mechanism system.

I. BACKGROUND

Model predictive control (MPC) is a very popular algo-
rithm for constrained control tasks. It is a standard due to
the robustness of the control solution that it provides and
the simplicity of the solution. One particular advantage that
it provides is that it is receding horizon control, which means
that the control solution at a particular instant is determined
by considering the system output and input at the current
time step and a fixed number of subsequent time steps. The
MPC formulation is based on a model of the system which
we are trying to control. Often, this model is not exactly
known and only an approximation of this model can be
estimated through system identification means. The quality
of this approximation determines the quality of the control
solution in the tracking problem. A very good quality model
is able to give more accurate relationships between the con-
trol input and the system output. However, real world systems
are often non-linear in nature and require complex non-linear
functions in the model description. Processing these non-
linear relationships places an additional computational load
on the hardware and makes using complex models in real-
time systems slow and difficult. Ideally, we would want to
build the simplest model that also accurately describes the
system.

Linear model are simple approximations that are often
used to describe a system. This model, Σ, can be described
mathematically as:

xk+1 = Axk +Buk +Gvk
yk = Cxk +Dvk

(1)

where, xk ∈ Rn×1, uk ∈ Rq×1, yk ∈ Rp×1, A ∈ Rn×n,
B ∈ Rn×q , and C ∈ Rp×n. vk ∈ Rn×1 is additive noise that
is combined with the state and observation through matrices

1 Department of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, USA, aaatresh@umich.edu.

G and D, such that GTD = 0. Matrices G and D here
are the square roots of the covariance matrices of the state
process noise and observation noise.

In a tracking problem, let us assume that rk is the trend
the output of the system must follow at each time step. In the
MPC formulation, we would like to minimize the following
cost function at every time step k, Jk(uk,Σ),

Jk(uk,Σ) =
∑Hp

i=1 ||rk+i − ŷk+i|k||2Qi
+∑Hu−1

j=0 ||ûk+j|k − ûk+j−1|k||2Ri

(2)

where, Hp and Hu are the prediction and control horizons
respectively, ŷk+i is the output prediction at time step k+ i
of yk+i, ûk+j is the control prediction at time step k + j
of uk+j and uk = [uk|k, ..., uk+Hu−1|k]

T . Qi is the weight
associated with the output prediction at time step k + i and
Rj is the weight associated with the control variation at k+j.
Following this formulation, the optimal control at time step
k is

uk|k = argminuk
(Jk(uk,Σ)) (3)

In the unconstrained MPC formulation, there exists a closed
form solution to this problem and is

uk|k = [Iq 0 ... 0](H
−1G) (4)

where H = ΘTQΘ + R and G = ΘTQ(rk − Ψx̂k|k). The
matrices used here are:

Ψ =

(CA)T

(CA2)T

...
(CAHp)T

 (5)

Θ =

CB 0 ... 0
CAB CB ... 0
...

CAHp−1B CAHp−HuB

 (6)

Q =diag(Q1, Q2, ..., QHp
) (7)

R =diag(R0, ..., RHu−1) (8)

rk =[rk+1, rk+2, ..., rk+Hp
]T (9)

where x̂k|k is an estimate of xk at time step k. This estimate
is usually determined using a Kalman filter. In this project,
I have considered the simpler case of the unconstrained
MPC formulation over the more complex constrained MPC
formulation due to the ease of implementation and the
close form solution that exists for the optimal control. The
approach for robust Kalman filtering that has been explained
and implemented in subsequent sections are also applicable
to the constrained MPC case, as mentioned in [1]. The

constrained MPC does not have a closed form solution and
an iterative approach can be taken.

A. Kalman Filtering

The Kalman filter is a state estimator for solving the
filtering equations when dealing with linear dynamics and a
Gaussian approximation of the state distributions. The state
space model can be described as:

xk+1 = Axk +Buk + ξk
yk = Cxk + ηk

(10)

where ξk is the state process noise and ηk is the noise
in the observation model. These noises can be expressed
in terms of their distributions as ξk ∼ N (0, GGT) and
ηk ∼ N (0, DDT)

The generalized prediction equation in Gaussian filtering
can be expressed as:

P (Xk|Yk−1) =

∫
P (Xk|Xk−1)P (Xk−1|Yk−1)dXk−1

(11)
The generalized update equation for Gaussian filtering can
be expressed as:

P (Xk|yk, Yk−1 = {y0, ..., yk−1}) =
P (yk|Xk)P (Xk|Yk−1)

P (yk|Yk−1)
(12)

When dealing with linear dynamics, we can simplify these
equations to obtain the Kalman filtering prediction equations
as:

m−
k =Amk−1 +Buk−1 (13)

P−
k =APk−1A

T +GGT (14)

Subsequently, we can obtain the update equations associated
with the Kalman filter as:

mk =m−
k + P−

k CT (CP−
k CT +DDT)−1(yk − Cm−

k)
(15)

Pk =P−
k − P−

k CT (CP−
k CT +DDT)−1CP−

k (16)

In the standard MPC formulation, at every time step a
new optimal control is determined through the closed form
expression shown in equation 4. Next, the same dynamics
is forward propagated to determine the output. However,
the next state of the system is estimated through a Kalman
filtering prediction step using the observation that is obtained.
In [1], these Kalman filtering equations have been expressed
slightly differently in notation as follows.

Firstly, let us define a few utility matrices:

Lk =PkC
T (CPkC

T +DDT) (17)
Kk =ALk (18)

Pk+1 =APkA
T −Kk(CPkC

T)KT
k +GGT (19)

Let us then look at the update equation:

x̂k|k =xk|k−1 + Lk(yk − Cx̂k|k−1) (20)

where, x̂k|k is the updated mean.

The prediction equation can be directly written from the
previous predicted state mean as:

x̂k+1|k =Axk|k−1 +Kk(yk − Cx̂k|k−1) +Buk (21)

where, x̂k+1|k is the prediction mean.
This Kalman filter formulation can be used in a standard

MPC formulation to determine estimates of the next state at
each time step. The standard MPC law has bee described
in algorithm 1. In this law, we start off with an observation
and initial state that is drawn from a Gaussian distribution
that is centered around zero and has covariance matrix P0.
Next, for each time step, the optimal control is obtained using
the updated estimate of the state at that time step, which is
provided by the Kalman filter.

Algorithm 1: Standard MPC Law
Data: K : Number of time steps for which

simulation must be run.
Result: Sequence of optimal control inputs as a

function of time step U1:K , sequence of
system outputs as a function of time step
Y1:K , Y0 = y0.

k ← 0 /* Time step counter */ ;
y0 ← 0 ;
P0 = V ar[ξ] ;
x0|−1 ∼ N (0, P0) ;
while k < K do

Lk = PkC
T (CPkC

T +DDT)
x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1)
H = ΘTQΘ+R
G = ΘTQ(rk −Ψx̂k|k)
uk|k = [Iq 0 ... 0](H

−1G)
Uk = uk|k
/*Applying uk|k to the system*/
xk+1|k = f(x̂k|k, uk|k, k)
yk+1 = h(xk+1|k, k)
Yk+1 = yk+1

Kk = ALk

Pk+1 =
APkA

T −Kk(CPkC
T +DDT)KT

k +GGT

x̂k+1|k = Ax̂k|k−1 +Kk(yk − Cx̂k|k−1) +Buk

k ← k + 1
end

B. Servo-mechanical System

To demonstrate my work in this project, I use the ap-
plication demonstrated in [1] and [2], the servo-mechanical
system. A servo is a mechanical actuator consisting of a
motor, gearbox and load. This can be seen in figure 1.
This actuator finds widespread application in robotics due to
the flexibility provided in usage. The underlying non-linear

Fig. 1: Servo-mechanical system

model describing this system is:

Jlθ̈l =ρTs − βlθ̇l − Tfl(θ̇l) (22)

Jmθ̈m =Tm − Ts − βmθ̇m − Tfm(θ̇m) (23)
Tm =KtIm (24)

V =RIm + L ˙Im + Em (25)

Em =Ktθ̇m (26)

Im =
(V − Em)

R
(1− e

−Rt
L) (27)

Ts =
kθ
ρ
(
θm
ρ
− θl) (28)

The non-linearities in the state update equations comes from
the following equations:

Tfl(θ̇l) =(αl0 + αl1e
−αl2

|θ̇l|)sgn(θ̇l) (29)

Tfm(˙θm) =(αm0 + αm1e
−αm2

| ˙θm|)sgn(θ̇m) (30)

and sgn(x) is defined as:

sgn(x) =

 1 x > 0
0 x = 0
−1 x < 0

 (31)

The variables and constants in the non-linear dynamics are
shown in table I. Here, the values that were suggested in
[1] and that were used in my experiments have been shown
for these parameters. It must be noted that here, ϵmax and
ϵmin are used as parameter perturbations on the linear model
(nominal model) described in the next paragraph. This is
because the values of the parameters of the non-linear model
are difficult to estimate and need not be necessarily accurate.

Those parameters that whose nominal value is considered
reliable enough are perturbed with ϵmin and otherwise are
perturbed with ϵmax.

The linear version of these dynamics is obtained by
removing the non-linear terms Tfl and Tfm, and assigning
L to 0. These linear dynamics can be expressed as:

Jlθ̈l =ρTs − βlθ̇l (32)

Jmθ̈m =Tm − Ts − βmθ̇m (33)

The parameter values of the nominal model can be seen
in table II. More information about this servo-mechanical
system and the nominal parameters values can be found in
[2].

Let us consider the state of this system to be xk =
[θl,k, θ̇l,k, θm,k, θ̇m,k]

T . The continuous time non-linear dy-
namics were discretized using the zero-order hold method
and sampling time ∆T . This can be expressed as:

xk+1 = xk +∆Tf(xk, uk, k) (34)

The continuous time linear dynamics were discretized in the
following manner:

A =eAc∆T (35)

B =A−1
c (eAc∆T − I)Bc (36)

xk+1 =Axk +Buk (37)
yk =Cxk (38)

where Ac and Bc are the continuous time linear system
matrices obtained from equations (32) and (33).

It must be noted that the input must be constrained to make
this simulation as realistic as possible. Considering [2] as a

TABLE I: Real parameters of the Servo-mechanical system

Symbol Meaning Value
ϵmin Minimum model pertur-

bation
0.05

ϵmax Maximum model pertur-
bation

0.1

L Inductance of armature
coil

0.8

Jm Moment of inertia of the
motor

0.5(1 + ϵmax)

βm Motor viscous friction
coefficient

0.1(1 + ϵmax)

R Resistance of armature
coil

20(1 + ϵmin)

Kt Motor constant 10(1 + ϵmax)
ρ Gear ratio 20(1 + ϵmin)
kθ Torsional rigidity 1280.2(1 + ϵmin)
Jl Moment of inertia of the

load
25(1 + ϵmax)

βl Load viscous friction
coefficient

25(1 + ϵmax)

[αl0 , αl1 , αl2] Load non-linear friction
parameters

[0.5, 10. 0.5]

[αm0 , αm1 , αm2] Motor non-linear fric-
tion parameters

[0.1, 2, 0.5]

TABLE II: Nominal parameters of the servo-mechanical
system

Symbol Meaning Value
L Inductance of armature coil 0
Jm Moment of inertia of the motor 0.5
βm Motor viscous friction coefficient 0.1
R Resistance of armature coil 20
Kt Motor constant 10
ρ Gear ratio 20
kθ Torsional rigidity 1280.2
Jl Moment of inertia of the load 25
βl Load viscous friction coefficient 25

guide for these dynamics, the following constaint is applied
on the input at every time step:

|uk| ≤ 220V (39)

II. PROBLEM SETUP

When building controllers for real world systems, we
must work with the non-linear relationships between system
states and inputs. However, building and implementing a
non-linear model that accurately describes the system is
computationally expensive to run on hardware. Instead, we
would prefer simple linear models that are much cheaper
in computational complexity. However, this linear model is
only an approximation of the system we are trying to control
and this approximation leads to sub-optimal solutions in
the control input for the tracking problem using a standard
MPC. Instead of using the standard Kalman filter in the
MPC, we instead follow the suggestion of [1] to use the
robust Kalman filter [3], that performs state estimation with
the knowledge that the model we are working with is
only an approximation of the true model. This controller
is much more robust towards approximation errors and in
tackling model uncertainty. To compare the two controllers,

we implement them for a tracking problem with the servo-
mechanism described in section I-B.

III. PROPOSED METHODS

The standard Kalman filtering formulation is vulnerable
to modelling errors. These modelling uncertainties play a
big role in causing deviations in good state estimates. Kas-
sam and Poor [4] - [5] did early work on optimal filters
that helped mitigate these problems by solving a minimax
problem. In this approach, a set of possible system models
are considered to lie in the neighborhood centered about a
nominal model. In the minimax optimization approach, an
optimal filter is created for the least favorable model. This
early work although promising, had the issue of being very
difficult to implement. However, more recent work in this
area has lead to the revival of the minimax viewpoint, in the
context where modelling errors are described as norms of
state-space dynamics perturbations. Levy et al in [3] follows
this path by proposing the re-interpretation of risk sensitive
filters for its use in this minimax viewpoint.

The risk sensitive filtering strategy is based on replacing
the standard quadratic loss function in the least squares
filtering problem with an exponential quadratic loss func-
tion, which is used to heavily penalize large errors. In the
context of using risk sensitive filters, model uncertainties are
described as an N-D ball of possible models around the
nominal model. The radius of the ball is considered to be
a tolerance parameter and the distance measure here is the
relative relative entropy between a possible model and the
nominal one.

Let us consider the nominal model to be Σ and the actual
model to be Σ̃. The minimax solution towards obtaining the
optimal control at time step k is a modification of equation
(3):

uk|k = argminuk
maxΣ̃∈SJk(uk, Σ̃) (40)

The robust MPC formulation is based on solving this
optimization problem at the step where the optimal control
is obtained. Robust MPC has previously shown good results
because of the fact that it considers the possibility that we
may not know the exact model description and takes into
account this model uncertainty when determining the optimal
control. More details about this kind of thought process
incorporation in the MPC framework has been described in
subsequent paragraphs.

Previous work has focused on solving this minimax prob-
lem. However, the computation required to solve equation
(40) is more demanding than that of solving a minimization
problem. Due to this, the authors in [1] instead propose
implementing robust MPC in two separate steps. Firstly, use
a robust Kalman filter to perform robust state estimation
under model uncertainties, and second, use the standard MPC
formulation mentioned in algorithm 1.

Suppose that our linear model Σ is of the form in equation
(1). Let the noise samples vk be independent and identically
distributed. Let us assume that the initial state, x0, is drawn
from a Gaussian distribution: f0(x0) ∼ N (x̄0, P̄0). Let us

create a new random vector zk = [xk+1, yk]
T which is

a combination of the next state and current observation.
At time step k, the model Σ is completely described by
the conditional probability of zk given the measurements
Yk−1 = [y0, ..., yk−1]

T , which is denoted by fk(zk|Yk−1).
As xk+1 and yk are normally distributed, their joint dis-
tribution (fk(zk|Yk−1)) will also be Gaussian. Now, let us
consider the actual conditional probability distribution to
be f̃k(zk|Yk−1). Similar to the approach of risk sensitive
filtering, we would like to use KL divergence as a distance
metric to determine the closeness of the nominal model and
the actual model. The KL divergence is a way to measure the
statistical distance between two distributions and compare
their similarity. The KL divergence between distributions fk
and f̃k can be described as:

D(f̃k, fk) =
∫

f̃k(zk, Yk−1)ln

(
f̃k(zk|Yk−1)

fk(zk|Yk−1)

)
dzk (41)

Using this measure, we can now define the set of all
allowable models Sk to be:

Sk = {f̃k(zk|Yk−1)|D(f̂k, fk) ≤ c} (42)

where c is the tolerance threshold. Set Sk denotes all possible
models lying inside a ball of radius c centered at fk.

Let us define a robust state estimator, g, as:

x̂ = g(y) (43)

Now, we can define the robust state estimate as an estimate
xk+1 given Yk as a solution of the following minimax
problem

xk+1|k = argmingk
maxEf̂k

[||xk+1 − gk(yk)||2|Yk−1] (44)

I have assumed that fk is normally distributed, fk ∼
N (mz,Kz). It can be shown that f̃k is also normally
distributed [3], that is, f̃k ∼ N (m̃z, K̃z). Their covariance
matrices can be written as:

Kz =

[
Kx Kxy

Kyx Ky

]
; K̃z =

[
K̃x Kxy

Kyx Ky

]
(45)

where the cross and co-variance matrices, Kxy and Ky , are
not perturbed and only Kx is perturbed to K̃x [3]. If we
define P and P̃ to be the error covariance matrices,

P =Kx −KxyK
−1
y Kyx (46)

P̃ =K̃x −KxyK
−1
y Kyx (47)

P̃ =(P−1 − τI)−1 (48)

where 1
τ is a Lagrange multiplier corresponding to the

constraint D(f̃k, fk) ≤ c in the optimization problem in
equation (44). The value of 1

τ is determined by choosing its
value that ensures the Karush-Kuhn-Tucker (KKT) condition
holds:

1

τ
(c−D(f̃k, fk)) = 0 (49)

If we try to evaluate the expression for the KL divergence,
mentioned in equation (41), it can be simplified through the
Gaussiantity of the input distributions to:

D(f̃k, fk) =
1

2

[
tr(P̃P−1 − I)− ln(det(P̃P−1))

]
(50)

=
1

2

[
tr((I − τP)−1 − I) + ln(det(I − τP))

]
(51)

From these formulations, we can define the value of τ as the
solution to:

γ(τ) = tr((I − τP)−1 − I) + ln(det(I − τP))− c (52)

Algorithm 2: Robust MPC Law
Data: K : Number of time steps for which

simulation must be run.
Result: Sequence of optimal control inputs as a

function of time step U1:K , sequence of
system outputs as a function of time step
Y1:K , Y0 = y0.

k ← 0 /* Time step counter */ ;
y0 ← 0 ;
P0 = V ar[ξ] ;
x0|−1 ∼ N (0, P0) ;
while k < K do

Find τk as the solution of
ln(det(I − τkPk)) + tr[(I − τkPk)

−1 − I] = c
P̃k = (P−1

k − τkI)
−1

Lk = P̃kC
T (CP̃kC

T +DDT)
x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1)
H = ΘTQΘ+R
G = ΘTQ(rk −Ψx̂k|k)
uk|k = [Iq 0 ... 0](H

−1G)
Uk = uk|k
/*Applying uk|k to the system*/
xk+1|k = f(x̂k|k, uk|k, k)
yk+1 = h(xk+1|k, k)
Yk+1 = yk+1

Kk = ALk

Pk+1 =
AP̃kA

T −Kk(CP̃kC
T +DDT)KT

k +GGT

x̂k+1|k = Ax̂k|k−1 +Kk(yk − Cx̂k|k−1) +Buk

k ← k + 1
end

The new covariance matrix P̃ can be used to create a more
robust form of the standard Kalman filtering formulation.
The robust Kalman filter prediction and update equations
respectively become:

Algorithm 3: Bisection algorithm
Result: τk = τ1
τ1 ← ϵ;
τ2 ← λ− ϵ where λ is the largest eigenvalue of Pk;
γ(τ) = ln(det(I − τPk)) + tr[(I − τPk)

−1 − I]− c
while |τ1 − τ2| ≥ ϵ do

τnew = τ1+τ2
2

if γ(τnew) < 0 then
τ1 ← τnew;

else
τ2 ← τnew;

end
end

P̃k =(P−1 − τkI)
−1 (53)

Lk =P̃kC
T (CP̃kC

T +DDT) (54)
Kk =ALk (55)

Pk+1 =AP̃kA
T −Kk(CP̃kC

T)KT
k +GGT (56)

x̂k|k =xk|k−1 + Lk(yk − Cx̂k|k−1) (57)
x̂k+1|k =Axk|k − 1 +Kk(yk − Cx̂k|k−1) +Buk (58)

Algorithm 2 shows the use of the robust Kalman filter
to find the optimal control in the standard MPC framework.
The function γ(τ) has been shown in [1] to be monotonically
increasing and convex in τ . Hence, to solve this root finding
problem, I have used the simple bisection algorithm, which
was also proposed in [1]. The bisection algorithm used in
my implementation can be found in algorithm 3.

IV. RESULTS

The controllers and dynamics were implemented in Python
and the code can be found in the appendix. Two sets of
experiments were conducted. First, I consider the scenario of
when the actual model and the nominal model coincide. This
means that at every time step, the forward propagation of the
dynamics corresponds to forward propagating the nominal
model. The second scenario corresponds to having the actual
model and the nominal model not coincide and that the
nominal model is only an approximation of the actual one.
This means that at every time step, the forward propagation
corresponds to working with the actual non-linear model.

In both experiments, I have considered a tracking problem
where the load angle must reach a set point of rk = π

2 rad.
A sampling time of 0.1s has been used here for the dis-
cretization. In experiment 1, that is, where the nominal model
coincides with the actual model, a system process noise and
observation noise of standard deviation 0.03 (3 % noise was
assumed to realistic here) was added. The dimension of the
state space was n = 4, dimension of control input space was
q = 1, and the dimension of the outpout space was p = 1.
Both experiments were simulated for 20 seconds. Moreover,
in both scenarios, the prediction horizon and control horizon
were set to Hp = 10 and Hu = 3 respectively. Due to the

difficulty faced in hand tuning the matrices Q and R, it was
made more stable by reducing the perturbations ϵmax and ϵmin
to 0. Finall, as we want to track the load angle of the servo,
C = [1, 0, 0, 0]T .

In the first experiment, I have run the standard MPC
controller and the robust MPC controller with the nominal
and actual models coinciding and their output and input
plots versus time can be found in figure 2. In this scenario,
Qk = 10000 and Rk = 0.1 for the standard MPC and
Qk = 50000 and Rk = 0.1 for the robust MPC case. These
parameters were hand-tuned by looking for the fastest and
most steady tracking of the set point.

In the second experiment, I run the two controllers except
with the fact that data is actually being generated by a model
different from the nominal one, that is, from the non-linear
model. The same type of comparison as done for the first
experiment can be found in figure 3. In this scenario, Qk =
5000 and Rk = 0.01 for the standard MPC and the same
values were used for the robust MPC. The threshold for KL
divergence, c was set to 0.1. These parameters were hand-
tuned by visually assessing the quality of the output and input
plots obtained. Similar to the previous experiment, I looked
for the fastest and most steady tracking of the set point.

Figure 4 compares the root mean square error (RMSE)
between the set point and the system output at every time
step. This comparison is done for both experiments and both
controllers. A zero error reference line has also been included
to get a better idea about the magnitude of the RMSE. Table
III compares the root mean square error across the entire
time of simulation, the norm of the voltage input and the
execution time of the controllers.

Now, let us first analyze the figures 2 and 3. Here, it can
be seen that both the controllers in each of the experiments
perform similarly. However, the system response of the
output with the robust MPC is much faster in time compared
to the standard MPC. In other words, the robust MPC reaches
the set point value faster than the standard MPC. This is the
case in both the experiments. This could imply that the robust
controller is able to provide a better estimate of the state of
the system than the standard Kalman filter with data obtained
over fewer time steps.

In addition to these observations, a shaded region is
depicted around the outputs from the two controllers in
both experiments in figures 2 and 3. This shaded region
has a total width of 4σ, with 2σ on either side of the
mean estimated load angle state. This is used to provide
a visualization of the confidence of the state estimator. σ
here is the standard deviation of the load angle estimate
and is obtained from matrix Pk as the square root of the
element at the first row and column. It can be seen in figure
2 that the robust MPC has a large uncertainty in its estimate
initially but also reduces rapidly with more time steps. This
uncertainty reduces to a great extent after 10 seconds in the
robust MPC. In the standard MPC however, the uncertainty
is low from the start in this experiment. In figure 3, high
uncertainty is seen once again here, but in both controllers.
This uncertainty decreases rapidly with more time steps.

Fig. 2: Plots of the system output and the control input when the nominal model coincides with the actual model.

Fig. 3: Plots of the system output and the control input when the nominal model differs from the actual model.

(a) Nominal model coincides with the actual model.

(b) Nominal model differs from the actual model.

Fig. 4: Comparison of the root mean square error between the standard MPC and robust MPC for the two scenarios: when
the nominal model coincides with the actual model and when the nominal model differs from the actual model.

TABLE III: Analysis of the root mean square error, norm of control input and execution time across all experiments.

Experiment Controller RMSE for tracking
(rad)

Norm of control input
(V)

Execution time
(s)

Exp1: Nominal model coincides with the actual model Standard MPC 0.3856 850.4994 0.000137
Robust MPC 0.3631 1013.9673 0.001609

Exp2: Nominal model differs from the actual model Standard MPC 0.3183 932.5745 0.000176
Robust MPC 0.3074 890.1463 0.002250

However, the robust MPC in experiment 2 experiences some
time intervals of lower confidence later in the simulation
(between 10 - 20 seconds) and this is reflected as a wider
shaded region in blue. The explanation for this could be
attributed to numerical instability in the bisection algorithm
as the value of τk determines the value of the covariance
matrix P̃ .

If we look at the input voltage with respect to time, we
see that the input is much steeper in the robust MPC than the
standard MPC. Moreover, the robust MPC saturates to the
maximum voltage of 220V for a longer time period than the
standard MPC in experiment 1. The input signal generated
by the robust MPC is also much noisier than the standard
MPC and can be explained by the fact that the robust MPC
is constructed to account for model uncertainties.

The root mean square error plots in figure 4 and values
in table III give us a better idea of the tracking ability of
the controllers. The figure allows us to do temporal analysis
on the root mean square error by seeing how it varies with
time. It can be seen that in both experiments, the RMSE
decreases as time increases, being close to 0 after about 10
seconds, which corresponds to its steady state. An interesting
observation is that in both experiments, the robust MPC
decreases more steeply to 0 compared to the standard MPC.
Now, if we look at the table, we can see the RMSE across
the entire simulation. It can be seen that the robust MPC
in both experiments improves over the standard MPC by a
slight amount.

The remaining two columns in table III give us an
idea about the input voltage and the execution time of
the controllers, which are more important when these are
implemented in real-time systems. It can be seen that for
experiment 1, more voltage is required over the entire time
for the robust MPC case compared to the standard MPC case.
However, the opposite happens in experiment 2. A lower
norm on the voltage input over the entire time period is desir-
able as that would correspond to a lower current supply and
would make the system more electrically efficient. Finally,
if we analyze the execution times of the controllers, we can
see that the robust MPC controllers takes much longer (∼
15 times longer) than the standard MPC. This is because
of the root finding problem to determine τ and the inverse
calculation to determine P̃k at every time step.

V. CONCLUSION

In this project, the robust Kalman filter was studied and
implemented in an unconstrained MPC framework for a
tracking problem with the servo-mechanism system. This
filter was compared with its counter part in the standard

MPC for the same application. It was observed that the robust
MPC outperforms the standard MPC slightly but at the cost
of higher execution times. To get a better idea about the
advantages of this robust Kalman filter, future work could
compare this with the standard MPC for many applications
and model uncertainties. Moreover, the choice between the
robust MPC and the standard MPC for a certain application
can be made based on a number of factors such as the
confidence in the nominal model in describing the system,
amount of computation available, response time requirements
etc.

REFERENCES

[1] A. Zenere and M. Zorzi, “On the coupling of model predictive control
and robust kalman filtering,” IET Control Theory & Applications,
vol. 12, no. 13, pp. 1873–1881, 2018.

[2] A. BEMPORAD and E. MOSCA, “Fulfilling hard constraints in uncer-
tain linear systems by reference managing,” Automatica, vol. 34, no. 4,
pp. 451–461, 1998.

[3] B. C. Levy and R. Nikoukhah, “Robust state space filtering under
incremental model perturbations subject to a relative entropy tolerance,”
IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 682–695,
2013.

[4] S. A. Kassam and T. L. Lim, “Robust wiener filters,” Journal of the
Franklin Institute, vol. 304, no. 4, pp. 171–185, 1977.

[5] S. Kassam and H. Poor, “Robust techniques for signal processing: A
survey,” Proceedings of the IEEE, vol. 73, no. 3, pp. 433–481, 1985.

